This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_A"
// Given 2 circles, return how many common tangents
#include "../../template.h"
#include "../basic.h"
#include "../circle.h"
void solve() {
Circle c1, c2; cin >> c1 >> c2;
cout << tangents(c1, c2).size() << endl;
}
#line 1 "Geometry/tests/aizu_cgl_7_a_cicle_tangents.test.cpp"
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_A"
// Given 2 circles, return how many common tangents
#line 1 "template.h"
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,a,b) for(int i=(a),_b=(b); i<=_b; i++)
#define FORD(i,a,b) for(int i=(a),_b=(b); i>=_b; i--)
#define REP(i,a) for(int i=0,_a=(a); i<_a; i++)
#define EACH(it,a) for(__typeof(a.begin()) it = a.begin(); it != a.end(); ++it)
#define DEBUG(x) { cout << #x << " = "; cout << (x) << endl; }
#define PR(a,n) { cout << #a << " = "; FOR(_,1,n) cout << a[_] << ' '; cout << endl; }
#define PR0(a,n) { cout << #a << " = "; REP(_,n) cout << a[_] << ' '; cout << endl; }
#define sqr(x) ((x) * (x))
// For printing pair, container, etc.
// Copied from https://quangloc99.github.io/2021/07/30/my-CP-debugging-template.html
template<class U, class V> ostream& operator << (ostream& out, const pair<U, V>& p) {
return out << '(' << p.first << ", " << p.second << ')';
}
template<class Con, class = decltype(begin(declval<Con>()))>
typename enable_if<!is_same<Con, string>::value, ostream&>::type
operator << (ostream& out, const Con& con) {
out << '{';
for (auto beg = con.begin(), it = beg; it != con.end(); it++) {
out << (it == beg ? "" : ", ") << *it;
}
return out << '}';
}
template<size_t i, class T> ostream& print_tuple_utils(ostream& out, const T& tup) {
if constexpr(i == tuple_size<T>::value) return out << ")";
else return print_tuple_utils<i + 1, T>(out << (i ? ", " : "(") << get<i>(tup), tup);
}
template<class ...U> ostream& operator << (ostream& out, const tuple<U...>& t) {
return print_tuple_utils<0, tuple<U...>>(out, t);
}
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
long long get_rand(long long r) {
return uniform_int_distribution<long long> (0, r-1)(rng);
}
template<typename T>
vector<T> read_vector(int n) {
vector<T> res(n);
for (int& x : res) cin >> x;
return res;
}
void solve();
int main() {
ios::sync_with_stdio(0); cin.tie(0);
solve();
return 0;
}
#line 2 "Geometry/basic.h"
// Basic geometry objects: Point, Line, Segment
// Works with both integers and floating points
// Unless the problem has precision issue, can use Point, which uses double
// and has more functionalities.
// For integers, can use P<long long>
#ifndef EPS // allow test files to overwrite EPS
#define EPS 1e-6
#endif
const double PI = acos(-1.0l);
double DEG_to_RAD(double d) { return d * PI / 180.0; }
double RAD_to_DEG(double r) { return r * 180.0 / PI; }
inline int cmp(double a, double b) {
return (a < b - EPS) ? -1 : ((a > b + EPS) ? 1 : 0);
}
// for int types
template<typename T, typename std::enable_if<!std::is_floating_point<T>::value>::type * = nullptr>
inline int cmp(T a, T b) {
return (a == b) ? 0 : (a < b) ? -1 : 1;
}
template<typename T>
struct P {
T x, y;
P() { x = y = T(0); }
P(T _x, T _y) : x(_x), y(_y) {}
P operator + (const P& a) const { return P(x+a.x, y+a.y); }
P operator - (const P& a) const { return P(x-a.x, y-a.y); }
P operator * (T k) const { return P(x*k, y*k); }
P<double> operator / (double k) const { return P(x/k, y/k); }
T operator * (const P& a) const { return x*a.x + y*a.y; } // dot product
T operator % (const P& a) const { return x*a.y - y*a.x; } // cross product
int cmp(const P<T>& q) const { if (int t = ::cmp(x,q.x)) return t; return ::cmp(y,q.y); }
#define Comp(x) bool operator x (const P& q) const { return cmp(q) x 0; }
Comp(>) Comp(<) Comp(==) Comp(>=) Comp(<=) Comp(!=)
#undef Comp
T norm() { return x*x + y*y; }
// Note: There are 2 ways for implementing len():
// 1. sqrt(norm()) --> fast, but inaccurate (produce some values that are of order X^2)
// 2. hypot(x, y) --> slow, but much more accurate
double len() { return hypot(x, y); }
P<double> rotate(double alpha) {
double cosa = cos(alpha), sina = sin(alpha);
return P(x * cosa - y * sina, x * sina + y * cosa);
}
};
using Point = P<double>;
// Compare points by (y, x)
template<typename T = double>
bool cmpy(const P<T>& a, const P<T>& b) {
if (cmp(a.y, b.y)) return a.y < b.y;
return a.x < b.x;
};
template<typename T>
int ccw(P<T> a, P<T> b, P<T> c) {
return cmp((b-a)%(c-a), T(0));
}
int RE_TRAI = ccw(P<int>(0, 0), P<int>(0, 1), P<int>(-1, 1));
int RE_PHAI = ccw(P<int>(0, 0), P<int>(0, 1), P<int>(1, 1));
template<typename T>
istream& operator >> (istream& cin, P<T>& p) {
cin >> p.x >> p.y;
return cin;
}
template<typename T>
ostream& operator << (ostream& cout, const P<T>& p) {
cout << p.x << ' ' << p.y;
return cout;
}
double angle(Point a, Point o, Point b) { // min of directed angle AOB & BOA
a = a - o; b = b - o;
return acos((a * b) / sqrt(a.norm()) / sqrt(b.norm()));
}
double directed_angle(Point a, Point o, Point b) { // angle AOB, in range [0, 2*PI)
double t = -atan2(a.y - o.y, a.x - o.x)
+ atan2(b.y - o.y, b.x - o.x);
while (t < 0) t += 2*PI;
return t;
}
// Distance from p to Line ab (closest Point --> c)
// i.e. c is projection of p on AB
double distToLine(Point p, Point a, Point b, Point &c) {
Point ap = p - a, ab = b - a;
double u = (ap * ab) / ab.norm();
c = a + (ab * u);
return (p-c).len();
}
// Distance from p to segment ab (closest Point --> c)
double distToLineSegment(Point p, Point a, Point b, Point &c) {
Point ap = p - a, ab = b - a;
double u = (ap * ab) / ab.norm();
if (u < 0.0) {
c = Point(a.x, a.y);
return (p - a).len();
}
if (u > 1.0) {
c = Point(b.x, b.y);
return (p - b).len();
}
return distToLine(p, a, b, c);
}
// NOTE: WILL NOT WORK WHEN a = b = 0.
struct Line {
double a, b, c; // ax + by + c = 0
Point A, B; // Added for polygon intersect line. Do not rely on assumption that these are valid
Line(double _a, double _b, double _c) : a(_a), b(_b), c(_c) {}
Line(Point _A, Point _B) : A(_A), B(_B) {
a = B.y - A.y;
b = A.x - B.x;
c = - (a * A.x + b * A.y);
}
Line(Point P, double m) {
a = -m; b = 1;
c = -((a * P.x) + (b * P.y));
}
double f(Point p) {
return a*p.x + b*p.y + c;
}
};
ostream& operator << (ostream& cout, const Line& l) {
cout << l.a << "*x + " << l.b << "*y + " << l.c;
return cout;
}
bool areParallel(Line l1, Line l2) {
return cmp(l1.a*l2.b, l1.b*l2.a) == 0;
}
bool areSame(Line l1, Line l2) {
return areParallel(l1 ,l2) && cmp(l1.c*l2.a, l2.c*l1.a) == 0
&& cmp(l1.c*l2.b, l1.b*l2.c) == 0;
}
bool areIntersect(Line l1, Line l2, Point &p) {
if (areParallel(l1, l2)) return false;
double dx = l1.b*l2.c - l2.b*l1.c;
double dy = l1.c*l2.a - l2.c*l1.a;
double d = l1.a*l2.b - l2.a*l1.b;
p = Point(dx/d, dy/d);
return true;
}
// closest point from p in line l.
void closestPoint(Line l, Point p, Point &ans) {
if (fabs(l.b) < EPS) {
ans.x = -(l.c) / l.a; ans.y = p.y;
return;
}
if (fabs(l.a) < EPS) {
ans.x = p.x; ans.y = -(l.c) / l.b;
return;
}
Line perp(l.b, -l.a, - (l.b*p.x - l.a*p.y));
areIntersect(l, perp, ans);
}
// Segment intersect
// Tested:
// - https://cses.fi/problemset/task/2190/
// returns true if p is on segment [a, b]
template<typename T>
bool onSegment(const P<T>& a, const P<T>& b, const P<T>& p) {
return ccw(a, b, p) == 0
&& min(a.x, b.x) <= p.x && p.x <= max(a.x, b.x)
&& min(a.y, b.y) <= p.y && p.y <= max(a.y, b.y);
}
// Returns true if segment [a, b] and [c, d] intersects
// End point also returns true
template<typename T>
bool segmentIntersect(const P<T>& a, const P<T>& b, const P<T>& c, const P<T>& d) {
if (onSegment(a, b, c)
|| onSegment(a, b, d)
|| onSegment(c, d, a)
|| onSegment(c, d, b)) {
return true;
}
return ccw(a, b, c) * ccw(a, b, d) < 0
&& ccw(c, d, a) * ccw(c, d, b) < 0;
}
#line 1 "Geometry/circle.h"
struct Circle : Point {
double r;
Circle(double _x = 0, double _y = 0, double _r = 0) : Point(_x, _y), r(_r) {}
Circle(Point p, double _r) : Point(p), r(_r) {}
bool contains(Point p) { return (*this - p).len() <= r + EPS; }
double area() const { return r*r*M_PI; }
// definitions in https://en.wikipedia.org/wiki/Circle
// assumption: 0 <= theta <= 2*PI
// theta: angle in radian
double sector_area(double theta) const {
return 0.5 * r * r * theta;
}
// assumption: 0 <= theta <= 2*PI
// theta: angle in radian
double segment_area(double theta) const {
return 0.5 * r * r * (theta - sin(theta));
}
};
istream& operator >> (istream& cin, Circle& c) {
cin >> c.x >> c.y >> c.r;
return cin;
}
ostream& operator << (ostream& cout, const Circle& c) {
cout << '(' << c.x << ", " << c.y << ") " << c.r;
return cout;
}
// Find common tangents to 2 circles
// Tested:
// - http://codeforces.com/gym/100803/ - H
// Helper method
void tangents(Point c, double r1, double r2, vector<Line> & ans) {
double r = r2 - r1;
double z = sqr(c.x) + sqr(c.y);
double d = z - sqr(r);
if (d < -EPS) return;
d = sqrt(fabs(d));
Line l((c.x * r + c.y * d) / z,
(c.y * r - c.x * d) / z,
r1);
ans.push_back(l);
}
// Actual method: returns vector containing all common tangents
vector<Line> tangents(Circle a, Circle b) {
vector<Line> ans; ans.clear();
for (int i=-1; i<=1; i+=2)
for (int j=-1; j<=1; j+=2)
tangents(b-a, a.r*i, b.r*j, ans);
for(int i = 0; i < (int) ans.size(); ++i)
ans[i].c -= ans[i].a * a.x + ans[i].b * a.y;
vector<Line> ret;
for(int i = 0; i < (int) ans.size(); ++i) {
if (std::none_of(ret.begin(), ret.end(), [&] (Line l) { return areSame(l, ans[i]); })) {
ret.push_back(ans[i]);
}
}
return ret;
}
// Circle & line intersection
// Tested:
// - http://codeforces.com/gym/100803/ - H
vector<Point> intersection(Line l, Circle cir) {
double r = cir.r, a = l.a, b = l.b, c = l.c + l.a*cir.x + l.b*cir.y;
vector<Point> res;
double x0 = -a*c/(a*a+b*b), y0 = -b*c/(a*a+b*b);
if (c*c > r*r*(a*a+b*b)+EPS) return res;
else if (fabs(c*c - r*r*(a*a+b*b)) < EPS) {
res.push_back(Point(x0, y0) + Point(cir.x, cir.y));
return res;
} else {
double d = r*r - c*c/(a*a+b*b);
double mult = sqrt (d / (a*a+b*b));
double ax,ay,bx,by;
ax = x0 + b * mult;
bx = x0 - b * mult;
ay = y0 - a * mult;
by = y0 + a * mult;
res.push_back(Point(ax, ay) + Point(cir.x, cir.y));
res.push_back(Point(bx, by) + Point(cir.x, cir.y));
return res;
}
}
// helper functions for commonCircleArea
double cir_area_solve(double a, double b, double c) {
return acos((a*a + b*b - c*c) / 2 / a / b);
}
double cir_area_cut(double a, double r) {
double s1 = a * r * r / 2;
double s2 = sin(a) * r * r / 2;
return s1 - s2;
}
// Tested: http://codeforces.com/contest/600/problem/D
double commonCircleArea(Circle c1, Circle c2) { //return the common area of two circle
if (c1.r < c2.r) swap(c1, c2);
double d = (c1 - c2).len();
if (d + c2.r <= c1.r + EPS) return c2.r*c2.r*M_PI;
if (d >= c1.r + c2.r - EPS) return 0.0;
double a1 = cir_area_solve(d, c1.r, c2.r);
double a2 = cir_area_solve(d, c2.r, c1.r);
return cir_area_cut(a1*2, c1.r) + cir_area_cut(a2*2, c2.r);
}
// Check if 2 circle intersects. Return true if 2 circles touch
bool areIntersect(Circle u, Circle v) {
if (cmp((u - v).len(), u.r + v.r) > 0) return false;
if (cmp((u - v).len() + v.r, u.r) < 0) return false;
if (cmp((u - v).len() + u.r, v.r) < 0) return false;
return true;
}
// If 2 circle touches, will return 2 (same) points
// If 2 circle are same --> be careful
// Tested:
// - http://codeforces.com/gym/100803/ - H
// - http://codeforces.com/gym/100820/ - I
vector<Point> circleIntersect(Circle u, Circle v) {
vector<Point> res;
if (!areIntersect(u, v)) return res;
double d = (u - v).len();
double alpha = acos((u.r * u.r + d*d - v.r * v.r) / 2.0 / u.r / d);
Point p1 = (v - u).rotate(alpha);
Point p2 = (v - u).rotate(-alpha);
res.push_back(p1 / p1.len() * u.r + u);
res.push_back(p2 / p2.len() * u.r + u);
return res;
}
#line 8 "Geometry/tests/aizu_cgl_7_a_cicle_tangents.test.cpp"
void solve() {
Circle c1, c2; cin >> c1 >> c2;
cout << tangents(c1, c2).size() << endl;
}