This documentation is automatically generated by online-judge-tools/verification-helper
#pragma once
// Basic geometry objects: Point, Line, Segment
// Works with both integers and floating points
// Unless the problem has precision issue, can use Point, which uses double
// and has more functionalities.
// For integers, can use P<long long>
#ifndef EPS // allow test files to overwrite EPS
#define EPS 1e-6
#endif
const double PI = acos(-1.0l);
double DEG_to_RAD(double d) { return d * PI / 180.0; }
double RAD_to_DEG(double r) { return r * 180.0 / PI; }
inline int cmp(double a, double b) {
return (a < b - EPS) ? -1 : ((a > b + EPS) ? 1 : 0);
}
// for int types
template<typename T, typename std::enable_if<!std::is_floating_point<T>::value>::type * = nullptr>
inline int cmp(T a, T b) {
return (a == b) ? 0 : (a < b) ? -1 : 1;
}
template<typename T>
struct P {
T x, y;
P() { x = y = T(0); }
P(T _x, T _y) : x(_x), y(_y) {}
P operator + (const P& a) const { return P(x+a.x, y+a.y); }
P operator - (const P& a) const { return P(x-a.x, y-a.y); }
P operator * (T k) const { return P(x*k, y*k); }
P<double> operator / (double k) const { return P(x/k, y/k); }
T operator * (const P& a) const { return x*a.x + y*a.y; } // dot product
T operator % (const P& a) const { return x*a.y - y*a.x; } // cross product
int cmp(const P<T>& q) const { if (int t = ::cmp(x,q.x)) return t; return ::cmp(y,q.y); }
#define Comp(x) bool operator x (const P& q) const { return cmp(q) x 0; }
Comp(>) Comp(<) Comp(==) Comp(>=) Comp(<=) Comp(!=)
#undef Comp
T norm() { return x*x + y*y; }
// Note: There are 2 ways for implementing len():
// 1. sqrt(norm()) --> fast, but inaccurate (produce some values that are of order X^2)
// 2. hypot(x, y) --> slow, but much more accurate
double len() { return hypot(x, y); }
P<double> rotate(double alpha) {
double cosa = cos(alpha), sina = sin(alpha);
return P(x * cosa - y * sina, x * sina + y * cosa);
}
};
using Point = P<double>;
// Compare points by (y, x)
template<typename T = double>
bool cmpy(const P<T>& a, const P<T>& b) {
if (cmp(a.y, b.y)) return a.y < b.y;
return a.x < b.x;
};
template<typename T>
int ccw(P<T> a, P<T> b, P<T> c) {
return cmp((b-a)%(c-a), T(0));
}
int RE_TRAI = ccw(P<int>(0, 0), P<int>(0, 1), P<int>(-1, 1));
int RE_PHAI = ccw(P<int>(0, 0), P<int>(0, 1), P<int>(1, 1));
template<typename T>
istream& operator >> (istream& cin, P<T>& p) {
cin >> p.x >> p.y;
return cin;
}
template<typename T>
ostream& operator << (ostream& cout, const P<T>& p) {
cout << p.x << ' ' << p.y;
return cout;
}
double angle(Point a, Point o, Point b) { // min of directed angle AOB & BOA
a = a - o; b = b - o;
return acos((a * b) / sqrt(a.norm()) / sqrt(b.norm()));
}
double directed_angle(Point a, Point o, Point b) { // angle AOB, in range [0, 2*PI)
double t = -atan2(a.y - o.y, a.x - o.x)
+ atan2(b.y - o.y, b.x - o.x);
while (t < 0) t += 2*PI;
return t;
}
// Distance from p to Line ab (closest Point --> c)
// i.e. c is projection of p on AB
double distToLine(Point p, Point a, Point b, Point &c) {
Point ap = p - a, ab = b - a;
double u = (ap * ab) / ab.norm();
c = a + (ab * u);
return (p-c).len();
}
// Distance from p to segment ab (closest Point --> c)
double distToLineSegment(Point p, Point a, Point b, Point &c) {
Point ap = p - a, ab = b - a;
double u = (ap * ab) / ab.norm();
if (u < 0.0) {
c = Point(a.x, a.y);
return (p - a).len();
}
if (u > 1.0) {
c = Point(b.x, b.y);
return (p - b).len();
}
return distToLine(p, a, b, c);
}
// NOTE: WILL NOT WORK WHEN a = b = 0.
struct Line {
double a, b, c; // ax + by + c = 0
Point A, B; // Added for polygon intersect line. Do not rely on assumption that these are valid
Line(double _a, double _b, double _c) : a(_a), b(_b), c(_c) {}
Line(Point _A, Point _B) : A(_A), B(_B) {
a = B.y - A.y;
b = A.x - B.x;
c = - (a * A.x + b * A.y);
}
Line(Point P, double m) {
a = -m; b = 1;
c = -((a * P.x) + (b * P.y));
}
double f(Point p) {
return a*p.x + b*p.y + c;
}
};
ostream& operator << (ostream& cout, const Line& l) {
cout << l.a << "*x + " << l.b << "*y + " << l.c;
return cout;
}
bool areParallel(Line l1, Line l2) {
return cmp(l1.a*l2.b, l1.b*l2.a) == 0;
}
bool areSame(Line l1, Line l2) {
return areParallel(l1 ,l2) && cmp(l1.c*l2.a, l2.c*l1.a) == 0
&& cmp(l1.c*l2.b, l1.b*l2.c) == 0;
}
bool areIntersect(Line l1, Line l2, Point &p) {
if (areParallel(l1, l2)) return false;
double dx = l1.b*l2.c - l2.b*l1.c;
double dy = l1.c*l2.a - l2.c*l1.a;
double d = l1.a*l2.b - l2.a*l1.b;
p = Point(dx/d, dy/d);
return true;
}
// closest point from p in line l.
void closestPoint(Line l, Point p, Point &ans) {
if (fabs(l.b) < EPS) {
ans.x = -(l.c) / l.a; ans.y = p.y;
return;
}
if (fabs(l.a) < EPS) {
ans.x = p.x; ans.y = -(l.c) / l.b;
return;
}
Line perp(l.b, -l.a, - (l.b*p.x - l.a*p.y));
areIntersect(l, perp, ans);
}
// Segment intersect
// Tested:
// - https://cses.fi/problemset/task/2190/
// returns true if p is on segment [a, b]
template<typename T>
bool onSegment(const P<T>& a, const P<T>& b, const P<T>& p) {
return ccw(a, b, p) == 0
&& min(a.x, b.x) <= p.x && p.x <= max(a.x, b.x)
&& min(a.y, b.y) <= p.y && p.y <= max(a.y, b.y);
}
// Returns true if segment [a, b] and [c, d] intersects
// End point also returns true
template<typename T>
bool segmentIntersect(const P<T>& a, const P<T>& b, const P<T>& c, const P<T>& d) {
if (onSegment(a, b, c)
|| onSegment(a, b, d)
|| onSegment(c, d, a)
|| onSegment(c, d, b)) {
return true;
}
return ccw(a, b, c) * ccw(a, b, d) < 0
&& ccw(c, d, a) * ccw(c, d, b) < 0;
}
#line 2 "Geometry/basic.h"
// Basic geometry objects: Point, Line, Segment
// Works with both integers and floating points
// Unless the problem has precision issue, can use Point, which uses double
// and has more functionalities.
// For integers, can use P<long long>
#ifndef EPS // allow test files to overwrite EPS
#define EPS 1e-6
#endif
const double PI = acos(-1.0l);
double DEG_to_RAD(double d) { return d * PI / 180.0; }
double RAD_to_DEG(double r) { return r * 180.0 / PI; }
inline int cmp(double a, double b) {
return (a < b - EPS) ? -1 : ((a > b + EPS) ? 1 : 0);
}
// for int types
template<typename T, typename std::enable_if<!std::is_floating_point<T>::value>::type * = nullptr>
inline int cmp(T a, T b) {
return (a == b) ? 0 : (a < b) ? -1 : 1;
}
template<typename T>
struct P {
T x, y;
P() { x = y = T(0); }
P(T _x, T _y) : x(_x), y(_y) {}
P operator + (const P& a) const { return P(x+a.x, y+a.y); }
P operator - (const P& a) const { return P(x-a.x, y-a.y); }
P operator * (T k) const { return P(x*k, y*k); }
P<double> operator / (double k) const { return P(x/k, y/k); }
T operator * (const P& a) const { return x*a.x + y*a.y; } // dot product
T operator % (const P& a) const { return x*a.y - y*a.x; } // cross product
int cmp(const P<T>& q) const { if (int t = ::cmp(x,q.x)) return t; return ::cmp(y,q.y); }
#define Comp(x) bool operator x (const P& q) const { return cmp(q) x 0; }
Comp(>) Comp(<) Comp(==) Comp(>=) Comp(<=) Comp(!=)
#undef Comp
T norm() { return x*x + y*y; }
// Note: There are 2 ways for implementing len():
// 1. sqrt(norm()) --> fast, but inaccurate (produce some values that are of order X^2)
// 2. hypot(x, y) --> slow, but much more accurate
double len() { return hypot(x, y); }
P<double> rotate(double alpha) {
double cosa = cos(alpha), sina = sin(alpha);
return P(x * cosa - y * sina, x * sina + y * cosa);
}
};
using Point = P<double>;
// Compare points by (y, x)
template<typename T = double>
bool cmpy(const P<T>& a, const P<T>& b) {
if (cmp(a.y, b.y)) return a.y < b.y;
return a.x < b.x;
};
template<typename T>
int ccw(P<T> a, P<T> b, P<T> c) {
return cmp((b-a)%(c-a), T(0));
}
int RE_TRAI = ccw(P<int>(0, 0), P<int>(0, 1), P<int>(-1, 1));
int RE_PHAI = ccw(P<int>(0, 0), P<int>(0, 1), P<int>(1, 1));
template<typename T>
istream& operator >> (istream& cin, P<T>& p) {
cin >> p.x >> p.y;
return cin;
}
template<typename T>
ostream& operator << (ostream& cout, const P<T>& p) {
cout << p.x << ' ' << p.y;
return cout;
}
double angle(Point a, Point o, Point b) { // min of directed angle AOB & BOA
a = a - o; b = b - o;
return acos((a * b) / sqrt(a.norm()) / sqrt(b.norm()));
}
double directed_angle(Point a, Point o, Point b) { // angle AOB, in range [0, 2*PI)
double t = -atan2(a.y - o.y, a.x - o.x)
+ atan2(b.y - o.y, b.x - o.x);
while (t < 0) t += 2*PI;
return t;
}
// Distance from p to Line ab (closest Point --> c)
// i.e. c is projection of p on AB
double distToLine(Point p, Point a, Point b, Point &c) {
Point ap = p - a, ab = b - a;
double u = (ap * ab) / ab.norm();
c = a + (ab * u);
return (p-c).len();
}
// Distance from p to segment ab (closest Point --> c)
double distToLineSegment(Point p, Point a, Point b, Point &c) {
Point ap = p - a, ab = b - a;
double u = (ap * ab) / ab.norm();
if (u < 0.0) {
c = Point(a.x, a.y);
return (p - a).len();
}
if (u > 1.0) {
c = Point(b.x, b.y);
return (p - b).len();
}
return distToLine(p, a, b, c);
}
// NOTE: WILL NOT WORK WHEN a = b = 0.
struct Line {
double a, b, c; // ax + by + c = 0
Point A, B; // Added for polygon intersect line. Do not rely on assumption that these are valid
Line(double _a, double _b, double _c) : a(_a), b(_b), c(_c) {}
Line(Point _A, Point _B) : A(_A), B(_B) {
a = B.y - A.y;
b = A.x - B.x;
c = - (a * A.x + b * A.y);
}
Line(Point P, double m) {
a = -m; b = 1;
c = -((a * P.x) + (b * P.y));
}
double f(Point p) {
return a*p.x + b*p.y + c;
}
};
ostream& operator << (ostream& cout, const Line& l) {
cout << l.a << "*x + " << l.b << "*y + " << l.c;
return cout;
}
bool areParallel(Line l1, Line l2) {
return cmp(l1.a*l2.b, l1.b*l2.a) == 0;
}
bool areSame(Line l1, Line l2) {
return areParallel(l1 ,l2) && cmp(l1.c*l2.a, l2.c*l1.a) == 0
&& cmp(l1.c*l2.b, l1.b*l2.c) == 0;
}
bool areIntersect(Line l1, Line l2, Point &p) {
if (areParallel(l1, l2)) return false;
double dx = l1.b*l2.c - l2.b*l1.c;
double dy = l1.c*l2.a - l2.c*l1.a;
double d = l1.a*l2.b - l2.a*l1.b;
p = Point(dx/d, dy/d);
return true;
}
// closest point from p in line l.
void closestPoint(Line l, Point p, Point &ans) {
if (fabs(l.b) < EPS) {
ans.x = -(l.c) / l.a; ans.y = p.y;
return;
}
if (fabs(l.a) < EPS) {
ans.x = p.x; ans.y = -(l.c) / l.b;
return;
}
Line perp(l.b, -l.a, - (l.b*p.x - l.a*p.y));
areIntersect(l, perp, ans);
}
// Segment intersect
// Tested:
// - https://cses.fi/problemset/task/2190/
// returns true if p is on segment [a, b]
template<typename T>
bool onSegment(const P<T>& a, const P<T>& b, const P<T>& p) {
return ccw(a, b, p) == 0
&& min(a.x, b.x) <= p.x && p.x <= max(a.x, b.x)
&& min(a.y, b.y) <= p.y && p.y <= max(a.y, b.y);
}
// Returns true if segment [a, b] and [c, d] intersects
// End point also returns true
template<typename T>
bool segmentIntersect(const P<T>& a, const P<T>& b, const P<T>& c, const P<T>& d) {
if (onSegment(a, b, c)
|| onSegment(a, b, d)
|| onSegment(c, d, a)
|| onSegment(c, d, b)) {
return true;
}
return ccw(a, b, c) * ccw(a, b, d) < 0
&& ccw(c, d, a) * ccw(c, d, b) < 0;
}