This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/find_linear_recurrence"
#include <bits/stdc++.h>
using namespace std;
#include "../modint.h"
using modular = ModInt<998244353>;
#include "../LinearRecurrence_BerlekampMassey.h"
#define REP(i, a) for (int i = 0, _##i = (a); i < _##i; ++i)
#define SZ(x) ((int)(x).size())
int32_t main() {
ios::sync_with_stdio(0); cin.tie(0);
int n; cin >> n;
vector<modular> a(n);
REP(i,n) cin >> a[i];
vector<modular> c = berlekampMassey<modular>(a);
cout << SZ(c) << endl;
for (auto x : c) cout << x << ' ';
cout << endl;
return 0;
}
#line 1 "Math/tests/berlekamp_massey.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/find_linear_recurrence"
#include <bits/stdc++.h>
using namespace std;
#line 1 "Math/modint.h"
// ModInt {{{
template<int MD> struct ModInt {
using ll = long long;
int x;
constexpr ModInt() : x(0) {}
constexpr ModInt(ll v) { _set(v % MD + MD); }
constexpr static int mod() { return MD; }
constexpr explicit operator bool() const { return x != 0; }
constexpr ModInt operator + (const ModInt& a) const {
return ModInt()._set((ll) x + a.x);
}
constexpr ModInt operator - (const ModInt& a) const {
return ModInt()._set((ll) x - a.x + MD);
}
constexpr ModInt operator * (const ModInt& a) const {
return ModInt()._set((ll) x * a.x % MD);
}
constexpr ModInt operator / (const ModInt& a) const {
return ModInt()._set((ll) x * a.inv().x % MD);
}
constexpr ModInt operator - () const {
return ModInt()._set(MD - x);
}
constexpr ModInt& operator += (const ModInt& a) { return *this = *this + a; }
constexpr ModInt& operator -= (const ModInt& a) { return *this = *this - a; }
constexpr ModInt& operator *= (const ModInt& a) { return *this = *this * a; }
constexpr ModInt& operator /= (const ModInt& a) { return *this = *this / a; }
friend constexpr ModInt operator + (ll a, const ModInt& b) {
return ModInt()._set(a % MD + b.x);
}
friend constexpr ModInt operator - (ll a, const ModInt& b) {
return ModInt()._set(a % MD - b.x + MD);
}
friend constexpr ModInt operator * (ll a, const ModInt& b) {
return ModInt()._set(a % MD * b.x % MD);
}
friend constexpr ModInt operator / (ll a, const ModInt& b) {
return ModInt()._set(a % MD * b.inv().x % MD);
}
constexpr bool operator == (const ModInt& a) const { return x == a.x; }
constexpr bool operator != (const ModInt& a) const { return x != a.x; }
friend std::istream& operator >> (std::istream& is, ModInt& other) {
ll val; is >> val;
other = ModInt(val);
return is;
}
constexpr friend std::ostream& operator << (std::ostream& os, const ModInt& other) {
return os << other.x;
}
constexpr ModInt pow(ll k) const {
ModInt ans = 1, tmp = x;
while (k) {
if (k & 1) ans *= tmp;
tmp *= tmp;
k >>= 1;
}
return ans;
}
constexpr ModInt inv() const {
if (x < 1000111) {
_precalc(1000111);
return invs[x];
}
int a = x, b = MD, ax = 1, bx = 0;
while (b) {
int q = a/b, t = a%b;
a = b; b = t;
t = ax - bx*q;
ax = bx; bx = t;
}
assert(a == 1);
if (ax < 0) ax += MD;
return ax;
}
static std::vector<ModInt> factorials, inv_factorials, invs;
constexpr static void _precalc(int n) {
if (factorials.empty()) {
factorials = {1};
inv_factorials = {1};
invs = {0};
}
if (n > MD) n = MD;
int old_sz = factorials.size();
if (n <= old_sz) return;
factorials.resize(n);
inv_factorials.resize(n);
invs.resize(n);
for (int i = old_sz; i < n; ++i) factorials[i] = factorials[i-1] * i;
inv_factorials[n-1] = factorials.back().pow(MD - 2);
for (int i = n - 2; i >= old_sz; --i) inv_factorials[i] = inv_factorials[i+1] * (i+1);
for (int i = n-1; i >= old_sz; --i) invs[i] = inv_factorials[i] * factorials[i-1];
}
static int get_primitive_root() {
static int primitive_root = 0;
if (!primitive_root) {
primitive_root = [&]() {
std::set<int> fac;
int v = MD - 1;
for (ll i = 2; i * i <= v; i++)
while (v % i == 0) fac.insert(i), v /= i;
if (v > 1) fac.insert(v);
for (int g = 1; g < MD; g++) {
bool ok = true;
for (auto i : fac)
if (ModInt(g).pow((MD - 1) / i) == 1) {
ok = false;
break;
}
if (ok) return g;
}
return -1;
}();
}
return primitive_root;
}
static ModInt C(int n, int k) {
_precalc(n + 1);
return factorials[n] * inv_factorials[k] * inv_factorials[n-k];
}
private:
// Internal, DO NOT USE.
// val must be in [0, 2*MD)
constexpr inline __attribute__((always_inline)) ModInt& _set(ll v) {
x = v >= MD ? v - MD : v;
return *this;
}
};
template <int MD> std::vector<ModInt<MD>> ModInt<MD>::factorials = {1};
template <int MD> std::vector<ModInt<MD>> ModInt<MD>::inv_factorials = {1};
template <int MD> std::vector<ModInt<MD>> ModInt<MD>::invs = {0};
// }}}
#line 7 "Math/tests/berlekamp_massey.test.cpp"
using modular = ModInt<998244353>;
#line 1 "Math/LinearRecurrence_BerlekampMassey.h"
// Given sequence s0, ..., s(N-1)
// Find sequence c1, ..., cd with minimum d (d >= 0), such that:
// si = sum(s(i-j) * c(j), for j = 1..d)
//
// Tutorial: https://mzhang2021.github.io/cp-blog/berlekamp-massey/
// If we have the linear recurrence, we can compute s(n):
// - O(n*d) naively
// - O(d^3 * log(n)) with matrix exponentiation
// - O(d*log(d)*log(k)) with generating function (tutorial above)
//
// Solving problems where we need to compute f(n) mod P (e.g. VOJ SELFDIV)
// - Guess that f is a linear recurrence
// - Compute f(n) for small n
// - Run Berlekamp Massey to find C (we must have 2*|C| < n, otherwise it's wrong)
//
// Note:
// - berlekampMassey must use ModInt<P> where p is prime, as it requires
// modular inverse
// - HOWEVER, solve() can use any type (e.g. BigInt)
// - when modulo is not prime --> https://github.com/zimpha/algorithmic-library/blob/master/cpp/mathematics/linear-recurrence.cc
// but this comment says it doesn't work on some problem: https://codeforces.com/blog/entry/61306?#comment-454682
//
// Tested:
// - (BM) https://judge.yosupo.jp/problem/find_linear_recurrence
// - (BM + find_kth) https://oj.vnoi.info/problem/selfdiv
// - (find_kth) https://oj.vnoi.info/problem/errichto_matexp_fibonacci
// - (find_kth) https://cses.fi/problemset/task/2181/
// - 2022 ICPC Vietnam National - H
// Berlekamp Massey {{{
// Returns c1, ..., cd
template<typename T>
vector<T> berlekampMassey(vector<T> s) {
if (s.empty()) return {};
int n = s.size(), L = 0, m = 0; // m = i - f
vector<T> C(n), D(n), oldC;
C[0] = D[0] = 1;
T df1 = 1; // d(f+1)
for (int i = 0; i < n; i++) {
++m;
// check if C(i) == a(i)
// delta = s_i - sum( cj * s(i-j) ) = d(f+1)?
T delta = s[i];
for (int j = 1; j <= L; j++) {
delta += C[j] * s[i-j]; // C(j) is already multiplied by -1
}
if (delta == 0) continue; // C(i) is correct
// Update c = c + d
oldC = C;
T coeff = delta * df1.inv();
for (int j = m; j < n; j++) {
C[j] -= coeff * D[j - m]; // prepend D with m zeroes, multiply by coeff and add to C
}
if (2*L > i) continue;
L = i + 1 - L, D = oldC, df1 = delta, m = 0;
}
C.resize(L + 1);
C.erase(C.begin());
for (auto& x : C) x = -x;
return C;
}
// Helper function
template<typename T>
vector<T> mul(const vector<T> &a, const vector<T> &b, const vector<T>& c) {
vector<T> ret(a.size() + b.size() - 1);
// ret = a * b
for (int i=0; i<(int)a.size(); i++)
for (int j=0; j<(int)b.size(); j++)
ret[i+j] += a[i] * b[j];
int n = c.size();
// reducing ret mod f(x)
for (int i=(int)ret.size()-1; i>=n; i--)
for (int j=n-1; j>=0; j--)
ret[i-j-1] += ret[i] * c[j];
ret.resize(min((int) ret.size(), n));
return ret;
}
// Find k-th element in linear recurrence: O(d^2 * logn)
// Need faster code? See https://judge.yosupo.jp/problem/kth_term_of_linearly_recurrent_sequence
// (but usually not needed since bottleneck is BerlekampMassey
//
// Params:
// - c: as returned by berlekampMassey
// - s: s0, s1, ..., s(N-1)
// Returns: s(k)
template<typename T>
T solve(const vector<T> &c, const vector<T> &s, long long k) {
int n = (int) c.size();
assert(c.size() <= s.size());
vector<T> a = n == 1 ? vector<T>{c[0]} : vector<T>{0, 1}, x{1};
for (; k>0; k/=2) {
if (k % 2)
x = mul(x, a, c); // mul(a, b) computes a(x) * b(x) mod f(x)
a = mul(a, a, c);
}
x.resize(n);
T ret = 0;
for (int i=0; i<n; i++)
ret += x[i] * s[i];
return ret;
}
// }}}
#line 11 "Math/tests/berlekamp_massey.test.cpp"
#define REP(i, a) for (int i = 0, _##i = (a); i < _##i; ++i)
#define SZ(x) ((int)(x).size())
int32_t main() {
ios::sync_with_stdio(0); cin.tie(0);
int n; cin >> n;
vector<modular> a(n);
REP(i,n) cin >> a[i];
vector<modular> c = berlekampMassey<modular>(a);
cout << SZ(c) << endl;
for (auto x : c) cout << x << ' ';
cout << endl;
return 0;
}