This documentation is automatically generated by online-judge-tools/verification-helper
// Given sequence s0, ..., s(N-1)
// Find sequence c1, ..., cd with minimum d (d >= 0), such that:
// si = sum(s(i-j) * c(j), for j = 1..d)
//
// Tutorial: https://mzhang2021.github.io/cp-blog/berlekamp-massey/
// If we have the linear recurrence, we can compute s(n):
// - O(n*d) naively
// - O(d^3 * log(n)) with matrix exponentiation
// - O(d*log(d)*log(k)) with generating function (tutorial above)
//
// Solving problems where we need to compute f(n) mod P (e.g. VOJ SELFDIV)
// - Guess that f is a linear recurrence
// - Compute f(n) for small n
// - Run Berlekamp Massey to find C (we must have 2*|C| < n, otherwise it's wrong)
//
// Note:
// - berlekampMassey must use ModInt<P> where p is prime, as it requires
// modular inverse
// - HOWEVER, solve() can use any type (e.g. BigInt)
// - when modulo is not prime --> https://github.com/zimpha/algorithmic-library/blob/master/cpp/mathematics/linear-recurrence.cc
// but this comment says it doesn't work on some problem: https://codeforces.com/blog/entry/61306?#comment-454682
//
// Tested:
// - (BM) https://judge.yosupo.jp/problem/find_linear_recurrence
// - (BM + find_kth) https://oj.vnoi.info/problem/selfdiv
// - (find_kth) https://oj.vnoi.info/problem/errichto_matexp_fibonacci
// - (find_kth) https://cses.fi/problemset/task/2181/
// - 2022 ICPC Vietnam National - H
// Berlekamp Massey {{{
// Returns c1, ..., cd
template<typename T>
vector<T> berlekampMassey(vector<T> s) {
if (s.empty()) return {};
int n = s.size(), L = 0, m = 0; // m = i - f
vector<T> C(n), D(n), oldC;
C[0] = D[0] = 1;
T df1 = 1; // d(f+1)
for (int i = 0; i < n; i++) {
++m;
// check if C(i) == a(i)
// delta = s_i - sum( cj * s(i-j) ) = d(f+1)?
T delta = s[i];
for (int j = 1; j <= L; j++) {
delta += C[j] * s[i-j]; // C(j) is already multiplied by -1
}
if (delta == 0) continue; // C(i) is correct
// Update c = c + d
oldC = C;
T coeff = delta * df1.inv();
for (int j = m; j < n; j++) {
C[j] -= coeff * D[j - m]; // prepend D with m zeroes, multiply by coeff and add to C
}
if (2*L > i) continue;
L = i + 1 - L, D = oldC, df1 = delta, m = 0;
}
C.resize(L + 1);
C.erase(C.begin());
for (auto& x : C) x = -x;
return C;
}
// Helper function
template<typename T>
vector<T> mul(const vector<T> &a, const vector<T> &b, const vector<T>& c) {
vector<T> ret(a.size() + b.size() - 1);
// ret = a * b
for (int i=0; i<(int)a.size(); i++)
for (int j=0; j<(int)b.size(); j++)
ret[i+j] += a[i] * b[j];
int n = c.size();
// reducing ret mod f(x)
for (int i=(int)ret.size()-1; i>=n; i--)
for (int j=n-1; j>=0; j--)
ret[i-j-1] += ret[i] * c[j];
ret.resize(min((int) ret.size(), n));
return ret;
}
// Find k-th element in linear recurrence: O(d^2 * logn)
// Need faster code? See https://judge.yosupo.jp/problem/kth_term_of_linearly_recurrent_sequence
// (but usually not needed since bottleneck is BerlekampMassey
//
// Params:
// - c: as returned by berlekampMassey
// - s: s0, s1, ..., s(N-1)
// Returns: s(k)
template<typename T>
T solve(const vector<T> &c, const vector<T> &s, long long k) {
int n = (int) c.size();
assert(c.size() <= s.size());
vector<T> a = n == 1 ? vector<T>{c[0]} : vector<T>{0, 1}, x{1};
for (; k>0; k/=2) {
if (k % 2)
x = mul(x, a, c); // mul(a, b) computes a(x) * b(x) mod f(x)
a = mul(a, a, c);
}
x.resize(n);
T ret = 0;
for (int i=0; i<n; i++)
ret += x[i] * s[i];
return ret;
}
// }}}
#line 1 "Math/LinearRecurrence_BerlekampMassey.h"
// Given sequence s0, ..., s(N-1)
// Find sequence c1, ..., cd with minimum d (d >= 0), such that:
// si = sum(s(i-j) * c(j), for j = 1..d)
//
// Tutorial: https://mzhang2021.github.io/cp-blog/berlekamp-massey/
// If we have the linear recurrence, we can compute s(n):
// - O(n*d) naively
// - O(d^3 * log(n)) with matrix exponentiation
// - O(d*log(d)*log(k)) with generating function (tutorial above)
//
// Solving problems where we need to compute f(n) mod P (e.g. VOJ SELFDIV)
// - Guess that f is a linear recurrence
// - Compute f(n) for small n
// - Run Berlekamp Massey to find C (we must have 2*|C| < n, otherwise it's wrong)
//
// Note:
// - berlekampMassey must use ModInt<P> where p is prime, as it requires
// modular inverse
// - HOWEVER, solve() can use any type (e.g. BigInt)
// - when modulo is not prime --> https://github.com/zimpha/algorithmic-library/blob/master/cpp/mathematics/linear-recurrence.cc
// but this comment says it doesn't work on some problem: https://codeforces.com/blog/entry/61306?#comment-454682
//
// Tested:
// - (BM) https://judge.yosupo.jp/problem/find_linear_recurrence
// - (BM + find_kth) https://oj.vnoi.info/problem/selfdiv
// - (find_kth) https://oj.vnoi.info/problem/errichto_matexp_fibonacci
// - (find_kth) https://cses.fi/problemset/task/2181/
// - 2022 ICPC Vietnam National - H
// Berlekamp Massey {{{
// Returns c1, ..., cd
template<typename T>
vector<T> berlekampMassey(vector<T> s) {
if (s.empty()) return {};
int n = s.size(), L = 0, m = 0; // m = i - f
vector<T> C(n), D(n), oldC;
C[0] = D[0] = 1;
T df1 = 1; // d(f+1)
for (int i = 0; i < n; i++) {
++m;
// check if C(i) == a(i)
// delta = s_i - sum( cj * s(i-j) ) = d(f+1)?
T delta = s[i];
for (int j = 1; j <= L; j++) {
delta += C[j] * s[i-j]; // C(j) is already multiplied by -1
}
if (delta == 0) continue; // C(i) is correct
// Update c = c + d
oldC = C;
T coeff = delta * df1.inv();
for (int j = m; j < n; j++) {
C[j] -= coeff * D[j - m]; // prepend D with m zeroes, multiply by coeff and add to C
}
if (2*L > i) continue;
L = i + 1 - L, D = oldC, df1 = delta, m = 0;
}
C.resize(L + 1);
C.erase(C.begin());
for (auto& x : C) x = -x;
return C;
}
// Helper function
template<typename T>
vector<T> mul(const vector<T> &a, const vector<T> &b, const vector<T>& c) {
vector<T> ret(a.size() + b.size() - 1);
// ret = a * b
for (int i=0; i<(int)a.size(); i++)
for (int j=0; j<(int)b.size(); j++)
ret[i+j] += a[i] * b[j];
int n = c.size();
// reducing ret mod f(x)
for (int i=(int)ret.size()-1; i>=n; i--)
for (int j=n-1; j>=0; j--)
ret[i-j-1] += ret[i] * c[j];
ret.resize(min((int) ret.size(), n));
return ret;
}
// Find k-th element in linear recurrence: O(d^2 * logn)
// Need faster code? See https://judge.yosupo.jp/problem/kth_term_of_linearly_recurrent_sequence
// (but usually not needed since bottleneck is BerlekampMassey
//
// Params:
// - c: as returned by berlekampMassey
// - s: s0, s1, ..., s(N-1)
// Returns: s(k)
template<typename T>
T solve(const vector<T> &c, const vector<T> &s, long long k) {
int n = (int) c.size();
assert(c.size() <= s.size());
vector<T> a = n == 1 ? vector<T>{c[0]} : vector<T>{0, 1}, x{1};
for (; k>0; k/=2) {
if (k % 2)
x = mul(x, a, c); // mul(a, b) computes a(x) * b(x) mod f(x)
a = mul(a, a, c);
}
x.resize(n);
T ret = 0;
for (int i=0; i<n; i++)
ret += x[i] * s[i];
return ret;
}
// }}}