This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/matrix_product"
#include <bits/stdc++.h>
using namespace std;
#include "../Matrix.h"
#include "../../buffered_reader.h"
#include "../modint.h"
#define REP(i, a) for (int i = 0, _##i = (a); i < _##i; ++i)
using modular = ModInt<998244353>;
int32_t main() {
ios::sync_with_stdio(0); cin.tie(0);
int n = IO::get<int>();
int m = IO::get<int>();
int k = IO::get<int>();
Matrix<modular> a(n, m);
Matrix<modular> b(m, k);
for (auto& x : a.x) x = IO::get<modular>();
for (auto& x : b.x) x = IO::get<modular>();
auto c = a * b;
REP(i,n) {
REP(j,k) cout << c[i][j] << ' ';
cout << '\n';
}
return 0;
}
#line 1 "Math/tests/matrix_mult.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/matrix_product"
#include <bits/stdc++.h>
using namespace std;
#line 1 "Math/Matrix.h"
// Matrix, which works for both double and int {{{
// Copied partially from https://judge.yosupo.jp/submission/54653
//
// Tested:
// - (mat mul): https://judge.yosupo.jp/problem/matrix_product
// - (mat pow): https://oj.vnoi.info/problem/icpc21_mt_k
// - (mat pow): https://oj.vnoi.info/problem/icpc21_mb_h
// - (gauss): https://oj.vnoi.info/problem/vmrook
// - (inverse): https://oj.vnoi.info/problem/dtl_lsr
// - (inverse): https://judge.yosupo.jp/problem/inverse_matrix
// - (det): https://judge.yosupo.jp/problem/matrix_det
template<typename T>
struct Matrix {
int n_row, n_col;
vector<T> x;
// accessors
typename vector<T>::iterator operator [] (int r) {
return x.begin() + r * n_col;
}
inline T get(int i, int j) const { return x[i * n_col + j]; }
vector<T> at(int r) const {
return vector<T> { x.begin() + r * n_col, x.begin() + (r+1) * n_col };
}
// constructors
Matrix() = default;
Matrix(int _n_row, int _n_col) : n_row(_n_row), n_col(_n_col), x(n_row * n_col) {}
Matrix(const vector<vector<T>>& d) : n_row(d.size()), n_col(d.size() ? d[0].size() : 0) {
for (auto& row : d) std::copy(row.begin(), row.end(), std::back_inserter(x));
}
// convert to 2d vec
vector<vector<T>> vecvec() const {
vector<vector<T>> ret(n_row);
for (int i = 0; i < n_row; i++) {
std::copy(x.begin() + i*n_col,
x.begin() + (i+1)*n_col,
std::back_inserter(ret[i]));
}
return ret;
}
operator vector<vector<T>>() const { return vecvec(); }
static Matrix identity(int n) {
Matrix res(n, n);
for (int i = 0; i < n; i++) {
res[i][i] = 1;
}
return res;
}
Matrix transpose() const {
Matrix res(n_col, n_row);
for (int i = 0; i < n_row; i++) {
for (int j = 0; j < n_col; j++) {
res[j][i] = this->get(i, j);
}
}
return res;
}
Matrix& operator *= (const Matrix& r) { return *this = *this * r; }
Matrix operator * (const Matrix& r) const {
assert(n_col == r.n_row);
Matrix res(n_row, r.n_col);
for (int i = 0; i < n_row; i++) {
for (int k = 0; k < n_col; k++) {
for (int j = 0; j < r.n_col; j++) {
res[i][j] += this->get(i, k) * r.get(k, j);
}
}
}
return res;
}
Matrix pow(long long n) const {
assert(n_row == n_col);
Matrix res = identity(n_row);
if (n == 0) return res;
bool res_is_id = true;
for (int i = 63 - __builtin_clzll(n); i >= 0; i--) {
if (!res_is_id) res *= res;
if ((n >> i) & 1) res *= (*this), res_is_id = false;
}
return res;
}
// Gauss
template <typename T2, typename std::enable_if<std::is_floating_point<T2>::value>::type * = nullptr>
static int choose_pivot(const Matrix<T2> &mtr, int h, int c) noexcept {
int piv = -1;
for (int j = h; j < mtr.n_row; j++) {
if (mtr.get(j, c) and (piv < 0 or std::abs(mtr.get(j, c)) > std::abs(mtr.get(piv, c)))) piv = j;
}
return piv;
}
template <typename T2, typename std::enable_if<!std::is_floating_point<T2>::value>::type * = nullptr>
static int choose_pivot(const Matrix<T2> &mtr, int h, int c) noexcept {
for (int j = h; j < mtr.n_row; j++) {
if (mtr.get(j, c) != T(0)) return j;
}
return -1;
}
// return upper triangle matrix
[[nodiscard]] Matrix gauss() const {
int c = 0;
Matrix mtr(*this);
vector<int> ws;
ws.reserve(n_col);
for (int h = 0; h < n_row; h++) {
if (c == n_col) break;
int piv = choose_pivot(mtr, h, c);
if (piv == -1) {
c++;
h--;
continue;
}
if (h != piv) {
for (int w = 0; w < n_col; w++) {
swap(mtr[piv][w], mtr[h][w]);
mtr[piv][w] *= -1; // for determinant
}
}
ws.clear();
for (int w = c; w < n_col; w++) {
if (mtr[h][w] != 0) ws.emplace_back(w);
}
const T hcinv = T(1) / mtr[h][c];
for (int hh = 0; hh < n_row; hh++) {
if (hh != h) {
const T coeff = mtr[hh][c] * hcinv;
for (auto w : ws) mtr[hh][w] -= mtr[h][w] * coeff;
mtr[hh][c] = 0;
}
}
c++;
}
return mtr;
}
// For upper triangle matrix
T det() const {
T ret = 1;
for (int i = 0; i < n_row; i++) {
ret *= get(i, i);
}
return ret;
}
// return rank of inverse matrix. If rank < n -> not invertible
int inverse() {
assert(n_row == n_col);
vector<vector<T>> ret = identity(n_row), tmp = *this;
int rank = 0;
for (int i = 0; i < n_row; i++) {
int ti = i;
while (ti < n_row && tmp[ti][i] == 0) ++ti;
if (ti == n_row) continue;
else ++rank;
ret[i].swap(ret[ti]);
tmp[i].swap(tmp[ti]);
T inv = T(1) / tmp[i][i];
for (int j = 0; j < n_col; j++) ret[i][j] *= inv;
for (int j = i+1; j < n_col; j++) tmp[i][j] *= inv;
for (int h = 0; h < n_row; h++) {
if (i == h) continue;
const T c = -tmp[h][i];
for (int j = 0; j < n_col; j++) ret[h][j] += ret[i][j] * c;
for (int j = i+1; j < n_col; j++) tmp[h][j] += tmp[i][j] * c;
}
}
*this = ret;
return rank;
}
// sum of all elements in this matrix
T sum_all() {
return submatrix_sum(0, 0, n_row, n_col);
}
// sum of [r1, r2) x [c1, c2)
T submatrix_sum(int r1, int c1, int r2, int c2) {
T res {0};
for (int r = r1; r < r2; ++r) {
res += std::accumulate(
x.begin() + r * n_col + c1,
x.begin() + r * n_col + c2,
T{0});
}
return res;
}
};
template<typename T>
ostream& operator << (ostream& cout, const Matrix<T>& m) {
cout << m.n_row << ' ' << m.n_col << endl;
for (int i = 0; i < m.n_row; ++i) {
cout << "row [" << i << "] = " << m.at(i) << endl;
}
return cout;
}
// }}}
#line 1 "buffered_reader.h"
// Buffered reader {{{
namespace IO {
const int BUFSIZE = 1<<14;
char buf[BUFSIZE + 1], *inp = buf;
bool reacheof;
char get_char() {
if (!*inp && !reacheof) {
memset(buf, 0, sizeof buf);
int tmp = fread(buf, 1, BUFSIZE, stdin);
if (tmp != BUFSIZE) reacheof = true;
inp = buf;
}
return *inp++;
}
template<typename T>
T get() {
int neg = 0;
T res = 0;
char c = get_char();
while (!std::isdigit(c) && c != '-' && c != '+') c = get_char();
if (c == '+') { neg = 0; }
else if (c == '-') { neg = 1; }
else res = c - '0';
c = get_char();
while (std::isdigit(c)) {
res = res * 10 + (c - '0');
c = get_char();
}
return neg ? -res : res;
}
};
// Helper methods
int ri() {
return IO::get<int>();
}
// }}}
#line 1 "Math/modint.h"
// ModInt {{{
template<int MD> struct ModInt {
using ll = long long;
int x;
constexpr ModInt() : x(0) {}
constexpr ModInt(ll v) { _set(v % MD + MD); }
constexpr static int mod() { return MD; }
constexpr explicit operator bool() const { return x != 0; }
constexpr ModInt operator + (const ModInt& a) const {
return ModInt()._set((ll) x + a.x);
}
constexpr ModInt operator - (const ModInt& a) const {
return ModInt()._set((ll) x - a.x + MD);
}
constexpr ModInt operator * (const ModInt& a) const {
return ModInt()._set((ll) x * a.x % MD);
}
constexpr ModInt operator / (const ModInt& a) const {
return ModInt()._set((ll) x * a.inv().x % MD);
}
constexpr ModInt operator - () const {
return ModInt()._set(MD - x);
}
constexpr ModInt& operator += (const ModInt& a) { return *this = *this + a; }
constexpr ModInt& operator -= (const ModInt& a) { return *this = *this - a; }
constexpr ModInt& operator *= (const ModInt& a) { return *this = *this * a; }
constexpr ModInt& operator /= (const ModInt& a) { return *this = *this / a; }
friend constexpr ModInt operator + (ll a, const ModInt& b) {
return ModInt()._set(a % MD + b.x);
}
friend constexpr ModInt operator - (ll a, const ModInt& b) {
return ModInt()._set(a % MD - b.x + MD);
}
friend constexpr ModInt operator * (ll a, const ModInt& b) {
return ModInt()._set(a % MD * b.x % MD);
}
friend constexpr ModInt operator / (ll a, const ModInt& b) {
return ModInt()._set(a % MD * b.inv().x % MD);
}
constexpr bool operator == (const ModInt& a) const { return x == a.x; }
constexpr bool operator != (const ModInt& a) const { return x != a.x; }
friend std::istream& operator >> (std::istream& is, ModInt& other) {
ll val; is >> val;
other = ModInt(val);
return is;
}
constexpr friend std::ostream& operator << (std::ostream& os, const ModInt& other) {
return os << other.x;
}
constexpr ModInt pow(ll k) const {
ModInt ans = 1, tmp = x;
while (k) {
if (k & 1) ans *= tmp;
tmp *= tmp;
k >>= 1;
}
return ans;
}
constexpr ModInt inv() const {
if (x < 1000111) {
_precalc(1000111);
return invs[x];
}
int a = x, b = MD, ax = 1, bx = 0;
while (b) {
int q = a/b, t = a%b;
a = b; b = t;
t = ax - bx*q;
ax = bx; bx = t;
}
assert(a == 1);
if (ax < 0) ax += MD;
return ax;
}
static std::vector<ModInt> factorials, inv_factorials, invs;
constexpr static void _precalc(int n) {
if (factorials.empty()) {
factorials = {1};
inv_factorials = {1};
invs = {0};
}
if (n > MD) n = MD;
int old_sz = factorials.size();
if (n <= old_sz) return;
factorials.resize(n);
inv_factorials.resize(n);
invs.resize(n);
for (int i = old_sz; i < n; ++i) factorials[i] = factorials[i-1] * i;
inv_factorials[n-1] = factorials.back().pow(MD - 2);
for (int i = n - 2; i >= old_sz; --i) inv_factorials[i] = inv_factorials[i+1] * (i+1);
for (int i = n-1; i >= old_sz; --i) invs[i] = inv_factorials[i] * factorials[i-1];
}
static int get_primitive_root() {
static int primitive_root = 0;
if (!primitive_root) {
primitive_root = [&]() {
std::set<int> fac;
int v = MD - 1;
for (ll i = 2; i * i <= v; i++)
while (v % i == 0) fac.insert(i), v /= i;
if (v > 1) fac.insert(v);
for (int g = 1; g < MD; g++) {
bool ok = true;
for (auto i : fac)
if (ModInt(g).pow((MD - 1) / i) == 1) {
ok = false;
break;
}
if (ok) return g;
}
return -1;
}();
}
return primitive_root;
}
static ModInt C(int n, int k) {
_precalc(n + 1);
return factorials[n] * inv_factorials[k] * inv_factorials[n-k];
}
private:
// Internal, DO NOT USE.
// val must be in [0, 2*MD)
constexpr inline __attribute__((always_inline)) ModInt& _set(ll v) {
x = v >= MD ? v - MD : v;
return *this;
}
};
template <int MD> std::vector<ModInt<MD>> ModInt<MD>::factorials = {1};
template <int MD> std::vector<ModInt<MD>> ModInt<MD>::inv_factorials = {1};
template <int MD> std::vector<ModInt<MD>> ModInt<MD>::invs = {0};
// }}}
#line 9 "Math/tests/matrix_mult.test.cpp"
#define REP(i, a) for (int i = 0, _##i = (a); i < _##i; ++i)
using modular = ModInt<998244353>;
int32_t main() {
ios::sync_with_stdio(0); cin.tie(0);
int n = IO::get<int>();
int m = IO::get<int>();
int k = IO::get<int>();
Matrix<modular> a(n, m);
Matrix<modular> b(m, k);
for (auto& x : a.x) x = IO::get<modular>();
for (auto& x : b.x) x = IO::get<modular>();
auto c = a * b;
REP(i,n) {
REP(j,k) cout << c[i][j] << ' ';
cout << '\n';
}
return 0;
}