This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=NTL_2_F"
#include "../../template.h"
#include "../bigint.h"
void solve() {
BigInt a, b; cin >> a >> b;
cout << a * b << endl;
}
#line 1 "Math/tests/aizu_ntl_2_f_bigint_mul_fft.test.cpp"
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=NTL_2_F"
#line 1 "template.h"
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,a,b) for(int i=(a),_b=(b); i<=_b; i++)
#define FORD(i,a,b) for(int i=(a),_b=(b); i>=_b; i--)
#define REP(i,a) for(int i=0,_a=(a); i<_a; i++)
#define EACH(it,a) for(__typeof(a.begin()) it = a.begin(); it != a.end(); ++it)
#define DEBUG(x) { cout << #x << " = "; cout << (x) << endl; }
#define PR(a,n) { cout << #a << " = "; FOR(_,1,n) cout << a[_] << ' '; cout << endl; }
#define PR0(a,n) { cout << #a << " = "; REP(_,n) cout << a[_] << ' '; cout << endl; }
#define sqr(x) ((x) * (x))
// For printing pair, container, etc.
// Copied from https://quangloc99.github.io/2021/07/30/my-CP-debugging-template.html
template<class U, class V> ostream& operator << (ostream& out, const pair<U, V>& p) {
return out << '(' << p.first << ", " << p.second << ')';
}
template<class Con, class = decltype(begin(declval<Con>()))>
typename enable_if<!is_same<Con, string>::value, ostream&>::type
operator << (ostream& out, const Con& con) {
out << '{';
for (auto beg = con.begin(), it = beg; it != con.end(); it++) {
out << (it == beg ? "" : ", ") << *it;
}
return out << '}';
}
template<size_t i, class T> ostream& print_tuple_utils(ostream& out, const T& tup) {
if constexpr(i == tuple_size<T>::value) return out << ")";
else return print_tuple_utils<i + 1, T>(out << (i ? ", " : "(") << get<i>(tup), tup);
}
template<class ...U> ostream& operator << (ostream& out, const tuple<U...>& t) {
return print_tuple_utils<0, tuple<U...>>(out, t);
}
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
long long get_rand(long long r) {
return uniform_int_distribution<long long> (0, r-1)(rng);
}
template<typename T>
vector<T> read_vector(int n) {
vector<T> res(n);
for (int& x : res) cin >> x;
return res;
}
void solve();
int main() {
ios::sync_with_stdio(0); cin.tie(0);
solve();
return 0;
}
#line 1 "Math/bigint.h"
// NOTE:
// - Base 10^k. If need base 2^k, see submissions in:
// https://www.spoj.com/problems/PBBN2/ (>= 0 only, operations: *, power, xor)
// https://www.spoj.com/problems/PELLFOUR/ (see CPP, older submissions)
// https://codeforces.com/contest/504/submission/42348976 (with negative, several operations)
//
// Tested:
// - https://www.e-olymp.com/en/problems/266: Comparison
// - https://www.e-olymp.com/en/problems/267: Subtraction
// - https://www.e-olymp.com/en/problems/271: Multiplication
// - https://www.e-olymp.com/en/problems/272: Multiplication
// - https://www.e-olymp.com/en/problems/313: Addition
// - https://www.e-olymp.com/en/problems/314: Addition/Subtraction
// - https://www.e-olymp.com/en/problems/317: Multiplication (simple / karatsuba / fft)
// - https://www.e-olymp.com/en/problems/1327: Multiplication
// - https://www.e-olymp.com/en/problems/1328
// - VOJ BIGNUM: Addition, Subtraction, Multiplication.
// - SGU 111: sqrt
// - SGU 193
// - SPOJ MUL, VFMUL: Multiplication.
// - SPOJ FDIV, VFDIV: Division.
// - SPOJ SQRROOT: sqrt
// BigInt {{{
const int BASE_DIGITS = 9;
const int BASE = 1000000000;
struct BigInt {
int sign;
vector<int> a;
// -------------------- Constructors --------------------
// Default constructor.
BigInt() : sign(1) {}
// Constructor from long long.
BigInt(long long v) {
*this = v;
}
BigInt& operator = (long long v) {
sign = 1;
if (v < 0) {
sign = -1;
v = -v;
}
a.clear();
for (; v > 0; v = v / BASE)
a.push_back(v % BASE);
return *this;
}
// Initialize from string.
BigInt(const string& s) {
read(s);
}
// -------------------- Input / Output --------------------
void read(const string& s) {
sign = 1;
a.clear();
int pos = 0;
while (pos < (int) s.size() && (s[pos] == '-' || s[pos] == '+')) {
if (s[pos] == '-')
sign = -sign;
++pos;
}
for (int i = s.size() - 1; i >= pos; i -= BASE_DIGITS) {
int x = 0;
for (int j = max(pos, i - BASE_DIGITS + 1); j <= i; j++)
x = x * 10 + s[j] - '0';
a.push_back(x);
}
trim();
}
friend istream& operator>>(istream &stream, BigInt &v) {
string s;
stream >> s;
v.read(s);
return stream;
}
friend ostream& operator<<(ostream &stream, const BigInt &v) {
if (v.sign == -1 && !v.isZero())
stream << '-';
stream << (v.a.empty() ? 0 : v.a.back());
for (int i = (int) v.a.size() - 2; i >= 0; --i)
stream << setw(BASE_DIGITS) << setfill('0') << v.a[i];
return stream;
}
// -------------------- Comparison --------------------
bool operator<(const BigInt &v) const {
if (sign != v.sign)
return sign < v.sign;
if (a.size() != v.a.size())
return a.size() * sign < v.a.size() * v.sign;
for (int i = ((int) a.size()) - 1; i >= 0; i--)
if (a[i] != v.a[i])
return a[i] * sign < v.a[i] * sign;
return false;
}
bool operator>(const BigInt &v) const {
return v < *this;
}
bool operator<=(const BigInt &v) const {
return !(v < *this);
}
bool operator>=(const BigInt &v) const {
return !(*this < v);
}
bool operator==(const BigInt &v) const {
return !(*this < v) && !(v < *this);
}
bool operator!=(const BigInt &v) const {
return *this < v || v < *this;
}
// Returns:
// 0 if |x| == |y|
// -1 if |x| < |y|
// 1 if |x| > |y|
friend int __compare_abs(const BigInt& x, const BigInt& y) {
if (x.a.size() != y.a.size()) {
return x.a.size() < y.a.size() ? -1 : 1;
}
for (int i = ((int) x.a.size()) - 1; i >= 0; --i) {
if (x.a[i] != y.a[i]) {
return x.a[i] < y.a[i] ? -1 : 1;
}
}
return 0;
}
// -------------------- Unary operator - and operators +- --------------------
BigInt operator-() const {
BigInt res = *this;
if (isZero()) return res;
res.sign = -sign;
return res;
}
// Note: sign ignored.
void __internal_add(const BigInt& v) {
if (a.size() < v.a.size()) {
a.resize(v.a.size(), 0);
}
for (int i = 0, carry = 0; i < (int) max(a.size(), v.a.size()) || carry; ++i) {
if (i == (int) a.size()) a.push_back(0);
a[i] += carry + (i < (int) v.a.size() ? v.a[i] : 0);
carry = a[i] >= BASE;
if (carry) a[i] -= BASE;
}
}
// Note: sign ignored.
void __internal_sub(const BigInt& v) {
for (int i = 0, carry = 0; i < (int) v.a.size() || carry; ++i) {
a[i] -= carry + (i < (int) v.a.size() ? v.a[i] : 0);
carry = a[i] < 0;
if (carry) a[i] += BASE;
}
this->trim();
}
BigInt operator += (const BigInt& v) {
if (sign == v.sign) {
__internal_add(v);
} else {
if (__compare_abs(*this, v) >= 0) {
__internal_sub(v);
} else {
BigInt vv = v;
swap(*this, vv);
__internal_sub(vv);
}
}
return *this;
}
BigInt operator -= (const BigInt& v) {
if (sign == v.sign) {
if (__compare_abs(*this, v) >= 0) {
__internal_sub(v);
} else {
BigInt vv = v;
swap(*this, vv);
__internal_sub(vv);
this->sign = -this->sign;
}
} else {
__internal_add(v);
}
return *this;
}
// Optimize operators + and - according to
// https://stackoverflow.com/questions/13166079/move-semantics-and-pass-by-rvalue-reference-in-overloaded-arithmetic
template< typename L, typename R >
typename std::enable_if<
std::is_convertible<L, BigInt>::value &&
std::is_convertible<R, BigInt>::value &&
std::is_lvalue_reference<R&&>::value,
BigInt>::type friend operator + (L&& l, R&& r) {
BigInt result(std::forward<L>(l));
result += r;
return result;
}
template< typename L, typename R >
typename std::enable_if<
std::is_convertible<L, BigInt>::value &&
std::is_convertible<R, BigInt>::value &&
std::is_rvalue_reference<R&&>::value,
BigInt>::type friend operator + (L&& l, R&& r) {
BigInt result(std::move(r));
result += l;
return result;
}
template< typename L, typename R >
typename std::enable_if<
std::is_convertible<L, BigInt>::value &&
std::is_convertible<R, BigInt>::value,
BigInt>::type friend operator - (L&& l, R&& r) {
BigInt result(std::forward<L>(l));
result -= r;
return result;
}
// -------------------- Operators * / % --------------------
friend pair<BigInt, BigInt> divmod(const BigInt& a1, const BigInt& b1) {
assert(b1 > 0); // divmod not well-defined for b < 0.
long long norm = BASE / (b1.a.back() + 1);
BigInt a = a1.abs() * norm;
BigInt b = b1.abs() * norm;
BigInt q = 0, r = 0;
q.a.resize(a.a.size());
for (int i = a.a.size() - 1; i >= 0; i--) {
r *= BASE;
r += a.a[i];
long long s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()];
long long s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1];
long long d = ((long long) BASE * s1 + s2) / b.a.back();
r -= b * d;
while (r < 0) {
r += b, --d;
}
q.a[i] = d;
}
q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
auto res = make_pair(q, r / norm);
if (res.second < 0) res.second += b1;
return res;
}
BigInt operator/(const BigInt &v) const {
if (v < 0) return divmod(-*this, -v).first;
return divmod(*this, v).first;
}
BigInt operator%(const BigInt &v) const {
return divmod(*this, v).second;
}
void operator/=(int v) {
assert(v > 0); // operator / not well-defined for v <= 0.
if (llabs(v) >= BASE) {
*this /= BigInt(v);
return ;
}
if (v < 0)
sign = -sign, v = -v;
for (int i = (int) a.size() - 1, rem = 0; i >= 0; --i) {
long long cur = a[i] + rem * (long long) BASE;
a[i] = (int) (cur / v);
rem = (int) (cur % v);
}
trim();
}
BigInt operator/(int v) const {
assert(v > 0); // operator / not well-defined for v <= 0.
if (llabs(v) >= BASE) {
return *this / BigInt(v);
}
BigInt res = *this;
res /= v;
return res;
}
void operator/=(const BigInt &v) {
*this = *this / v;
}
long long operator%(long long v) const {
assert(v > 0); // operator / not well-defined for v <= 0.
assert(v < BASE);
int m = 0;
for (int i = a.size() - 1; i >= 0; --i)
m = (a[i] + m * (long long) BASE) % v;
return m * sign;
}
void operator*=(int v) {
if (llabs(v) >= BASE) {
*this *= BigInt(v);
return ;
}
if (v < 0)
sign = -sign, v = -v;
for (int i = 0, carry = 0; i < (int) a.size() || carry; ++i) {
if (i == (int) a.size())
a.push_back(0);
long long cur = a[i] * (long long) v + carry;
carry = (int) (cur / BASE);
a[i] = (int) (cur % BASE);
//asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base));
/*
int val;
__asm {
lea esi, cur
mov eax, [esi]
mov edx, [esi+4]
mov ecx, base
div ecx
mov carry, eax
mov val, edx;
}
a[i] = val;
*/
}
trim();
}
BigInt operator*(int v) const {
if (llabs(v) >= BASE) {
return *this * BigInt(v);
}
BigInt res = *this;
res *= v;
return res;
}
// Convert BASE 10^old --> 10^new.
static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
vector<long long> p(max(old_digits, new_digits) + 1);
p[0] = 1;
for (int i = 1; i < (int) p.size(); i++)
p[i] = p[i - 1] * 10;
vector<int> res;
long long cur = 0;
int cur_digits = 0;
for (int i = 0; i < (int) a.size(); i++) {
cur += a[i] * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits) {
res.push_back((long long)(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((int) cur);
while (!res.empty() && !res.back())
res.pop_back();
return res;
}
void fft(vector<complex<double> > &x, bool invert) const {
int n = (int) x.size();
for (int i = 1, j = 0; i < n; ++i) {
int bit = n >> 1;
for (; j >= bit; bit >>= 1)
j -= bit;
j += bit;
if (i < j)
swap(x[i], x[j]);
}
for (int len = 2; len <= n; len <<= 1) {
double ang = 2 * 3.14159265358979323846 / len * (invert ? -1 : 1);
complex<double> wlen(cos(ang), sin(ang));
for (int i = 0; i < n; i += len) {
complex<double> w(1);
for (int j = 0; j < len / 2; ++j) {
complex<double> u = x[i + j];
complex<double> v = x[i + j + len / 2] * w;
x[i + j] = u + v;
x[i + j + len / 2] = u - v;
w *= wlen;
}
}
}
if (invert)
for (int i = 0; i < n; ++i)
x[i] /= n;
}
void multiply_fft(const vector<int> &x, const vector<int> &y, vector<int> &res) const {
vector<complex<double> > fa(x.begin(), x.end());
vector<complex<double> > fb(y.begin(), y.end());
int n = 1;
while (n < (int) max(x.size(), y.size()))
n <<= 1;
n <<= 1;
fa.resize(n);
fb.resize(n);
fft(fa, false);
fft(fb, false);
for (int i = 0; i < n; ++i)
fa[i] *= fb[i];
fft(fa, true);
res.resize(n);
long long carry = 0;
for (int i = 0; i < n; ++i) {
long long t = (long long) (fa[i].real() + 0.5) + carry;
carry = t / 1000;
res[i] = t % 1000;
}
}
BigInt mul_simple(const BigInt &v) const {
BigInt res;
res.sign = sign * v.sign;
res.a.resize(a.size() + v.a.size());
for (int i = 0; i < (int) a.size(); ++i)
if (a[i])
for (int j = 0, carry = 0; j < (int) v.a.size() || carry; ++j) {
long long cur = res.a[i + j] + (long long) a[i] * (j < (int) v.a.size() ? v.a[j] : 0) + carry;
carry = (int) (cur / BASE);
res.a[i + j] = (int) (cur % BASE);
}
res.trim();
return res;
}
typedef vector<long long> vll;
static vll karatsubaMultiply(const vll &a, const vll &b) {
int n = a.size();
vll res(n + n);
if (n <= 32) {
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
res[i + j] += a[i] * b[j];
return res;
}
int k = n >> 1;
vll a1(a.begin(), a.begin() + k);
vll a2(a.begin() + k, a.end());
vll b1(b.begin(), b.begin() + k);
vll b2(b.begin() + k, b.end());
vll a1b1 = karatsubaMultiply(a1, b1);
vll a2b2 = karatsubaMultiply(a2, b2);
for (int i = 0; i < k; i++)
a2[i] += a1[i];
for (int i = 0; i < k; i++)
b2[i] += b1[i];
vll r = karatsubaMultiply(a2, b2);
for (int i = 0; i < (int) a1b1.size(); i++)
r[i] -= a1b1[i];
for (int i = 0; i < (int) a2b2.size(); i++)
r[i] -= a2b2[i];
for (int i = 0; i < (int) r.size(); i++)
res[i + k] += r[i];
for (int i = 0; i < (int) a1b1.size(); i++)
res[i] += a1b1[i];
for (int i = 0; i < (int) a2b2.size(); i++)
res[i + n] += a2b2[i];
return res;
}
BigInt mul_karatsuba(const BigInt &v) const {
vector<int> x6 = convert_base(this->a, BASE_DIGITS, 6);
vector<int> y6 = convert_base(v.a, BASE_DIGITS, 6);
vll x(x6.begin(), x6.end());
vll y(y6.begin(), y6.end());
while (x.size() < y.size())
x.push_back(0);
while (y.size() < x.size())
y.push_back(0);
while (x.size() & (x.size() - 1))
x.push_back(0), y.push_back(0);
vll c = karatsubaMultiply(x, y);
BigInt res;
res.sign = sign * v.sign;
long long carry = 0;
for (int i = 0; i < (int) c.size(); i++) {
long long cur = c[i] + carry;
res.a.push_back((int) (cur % 1000000));
carry = cur / 1000000;
}
res.a = convert_base(res.a, 6, BASE_DIGITS);
res.trim();
return res;
}
void operator*=(const BigInt &v) {
*this = *this * v;
}
BigInt operator*(const BigInt &v) const {
if (a.size() * v.a.size() <= 1000111) return mul_simple(v);
if (a.size() > 500111 || v.a.size() > 500111) return mul_fft(v);
return mul_karatsuba(v);
}
BigInt mul_fft(const BigInt& v) const {
BigInt res;
res.sign = sign * v.sign;
multiply_fft(convert_base(a, BASE_DIGITS, 3), convert_base(v.a, BASE_DIGITS, 3), res.a);
res.a = convert_base(res.a, 3, BASE_DIGITS);
res.trim();
return res;
}
// -------------------- Misc --------------------
BigInt abs() const {
BigInt res = *this;
res.sign *= res.sign;
return res;
}
void trim() {
while (!a.empty() && !a.back())
a.pop_back();
if (a.empty())
sign = 1;
}
bool isZero() const {
return a.empty() || (a.size() == 1 && !a[0]);
}
friend BigInt gcd(const BigInt &x, const BigInt &y) {
return y.isZero() ? x : gcd(y, x % y);
}
friend BigInt lcm(const BigInt &x, const BigInt &y) {
return x / gcd(x, y) * y;
}
friend BigInt sqrt(const BigInt &a1) {
BigInt a = a1;
while (a.a.empty() || a.a.size() % 2 == 1)
a.a.push_back(0);
int n = a.a.size();
int firstDigit = (int) sqrt((double) a.a[n - 1] * BASE + a.a[n - 2]);
int norm = BASE / (firstDigit + 1);
a *= norm;
a *= norm;
while (a.a.empty() || a.a.size() % 2 == 1)
a.a.push_back(0);
BigInt r = (long long) a.a[n - 1] * BASE + a.a[n - 2];
firstDigit = (int) sqrt((double) a.a[n - 1] * BASE + a.a[n - 2]);
int q = firstDigit;
BigInt res;
for(int j = n / 2 - 1; j >= 0; j--) {
for(; ; --q) {
BigInt r1 = (r - (res * 2 * BigInt(BASE) + q) * q) * BigInt(BASE) * BigInt(BASE) + (j > 0 ? (long long) a.a[2 * j - 1] * BASE + a.a[2 * j - 2] : 0);
if (r1 >= 0) {
r = r1;
break;
}
}
res *= BASE;
res += q;
if (j > 0) {
int d1 = res.a.size() + 2 < r.a.size() ? r.a[res.a.size() + 2] : 0;
int d2 = res.a.size() + 1 < r.a.size() ? r.a[res.a.size() + 1] : 0;
int d3 = res.a.size() < r.a.size() ? r.a[res.a.size()] : 0;
q = ((long long) d1 * BASE * BASE + (long long) d2 * BASE + d3) / (firstDigit * 2);
}
}
res.trim();
return res / norm;
}
};
// }}}
#line 5 "Math/tests/aizu_ntl_2_f_bigint_mul_fft.test.cpp"
void solve() {
BigInt a, b; cin >> a >> b;
cout << a * b << endl;
}