ACM_Notebook_new

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ngthanhtrung23/ACM_Notebook_new

:heavy_check_mark: DataStructure/test/segment_tree_pointsetrangecomposite.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/point_set_range_composite"

#include <bits/stdc++.h>
using namespace std;

#include "../SegTree.h"
#include "../../Math/modint.h"
#include "../../buffered_reader.h"

using modular = ModInt<998244353>;

struct Func {
    modular a, b;
};

Func op(Func l, Func r) {
    return Func{
        l.a * r.a,
        r.a * l.b + r.b
    };
}
Func e() {
    return Func{1, 0};
}

int32_t main() {
    ios::sync_with_stdio(0); cin.tie(0);
    int n = IO::get<int>();
    int q = IO::get<int>();
    vector<Func> funcs(n);
    for (auto& f : funcs) {
        int a = IO::get<int>();
        int b = IO::get<int>();
        f = {a, b};
    }

    SegTree<Func, op, e> seg_tree(funcs);
    while (q--) {
        int typ = IO::get<int>();
        if (typ == 0) {
            int pos = IO::get<int>();
            int a = IO::get<int>();
            int b = IO::get<int>();
            seg_tree.set(pos, {a, b});
        } else {
            int l = IO::get<int>();
            int r = IO::get<int>();
            auto f = seg_tree.prod(l, r);
            modular x(IO::get<int>());
            cout << f.a * x + f.b << '\n';
        }
    }
    return 0;
}
#line 1 "DataStructure/test/segment_tree_pointsetrangecomposite.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/point_set_range_composite"

#include <bits/stdc++.h>
using namespace std;

#line 1 "DataStructure/SegTree.h"
// SegTree, copied from AtCoder library {{{
// AtCoder doc: https://atcoder.github.io/ac-library/master/document_en/segtree.html
//
// Notes:
// - Index of elements from 0 -> n-1
// - Range queries are [l, r-1]
//
// Tested:
// - (binary search) https://atcoder.jp/contests/practice2/tasks/practice2_j
// - https://oj.vnoi.info/problem/gss
// - https://oj.vnoi.info/problem/nklineup
// - (max_right & min_left for delete position queries) https://oj.vnoi.info/problem/segtree_itstr
// - https://judge.yosupo.jp/problem/point_add_range_sum
// - https://judge.yosupo.jp/problem/point_set_range_composite
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

template<
    class T,  // data type for nodes
    T (*op) (T, T),  // operator to combine 2 nodes
    T (*e)() // identity element
>
struct SegTree {
    SegTree() : SegTree(0) {}
    explicit SegTree(int n) : SegTree(vector<T> (n, e())) {}
    explicit SegTree(const vector<T>& v) : _n((int) v.size()) {
        log = ceil_pow2(_n);
        size = 1<<log;
        d = vector<T> (2*size, e());

        for (int i = 0; i < _n; i++) d[size+i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    // 0 <= p < n
    void set(int p, T x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    // 0 <= p < n
    T get(int p) const {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    // Get product in range [l, r-1]
    // 0 <= l <= r <= n
    // For empty segment (l == r) -> return e()
    T prod(int l, int r) const {
        assert(0 <= l && l <= r && r <= _n);
        T sml = e(), smr = e();
        l += size;
        r += size;
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    T all_prod() const {
        return d[1];
    }

    // Binary search on SegTree to find largest r:
    //    f(op(a[l] .. a[r-1])) = true   (assuming empty array is always true)
    //    f(op(a[l] .. a[r])) = false    (assuming op(..., a[n]), which is out of bound, is always false)
    template <bool (*f)(T)> int max_right(int l) const {
        return max_right(l, [](T x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) const {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        T sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    // Binary search on SegTree to find smallest l:
    //    f(op(a[l] .. a[r-1])) = true      (assuming empty array is always true)
    //    f(op(a[l-1] .. a[r-1])) = false   (assuming op(a[-1], ..), which is out of bound, is always false)
    template <bool (*f)(T)> int min_left(int r) const {
        return min_left(r, [](T x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) const {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        T sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

private:
    int _n, size, log;
    vector<T> d;

    void update(int k) {
        d[k] = op(d[2*k], d[2*k+1]);
    }
};
// }}}

// SegTree examples {{{
// Examples: Commonly used SegTree ops: max / min / sum
struct MaxSegTreeOp {
    static int op(int x, int y) {
        return max(x, y);
    }
    static int e() {
        return INT_MIN;
    }
};

struct MinSegTreeOp {
    static int op(int x, int y) {
        return min(x, y);
    }
    static int e() {
        return INT_MAX;
    }
};

struct SumSegTreeOp {
    static long long op(long long x, long long y) {
        return x + y;
    }
    static long long e() {
        return 0;
    }
};

// using STMax = SegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e>;
// using STMin = SegTree<int, MinSegTreeOp::op, MinSegTreeOp::e>;
// using STSum = SegTree<int, SumSegTreeOp::op, SumSegTreeOp::e>;
// }}}
#line 1 "Math/modint.h"
// ModInt {{{
template<int MD> struct ModInt {
    using ll = long long;
    int x;

    constexpr ModInt() : x(0) {}
    constexpr ModInt(ll v) { _set(v % MD + MD); }
    constexpr static int mod() { return MD; }
    constexpr explicit operator bool() const { return x != 0; }

    constexpr ModInt operator + (const ModInt& a) const {
        return ModInt()._set((ll) x + a.x);
    }
    constexpr ModInt operator - (const ModInt& a) const {
        return ModInt()._set((ll) x - a.x + MD);
    }
    constexpr ModInt operator * (const ModInt& a) const {
        return ModInt()._set((ll) x * a.x % MD);
    }
    constexpr ModInt operator / (const ModInt& a) const {
        return ModInt()._set((ll) x * a.inv().x % MD);
    }
    constexpr ModInt operator - () const {
        return ModInt()._set(MD - x);
    }

    constexpr ModInt& operator += (const ModInt& a) { return *this = *this + a; }
    constexpr ModInt& operator -= (const ModInt& a) { return *this = *this - a; }
    constexpr ModInt& operator *= (const ModInt& a) { return *this = *this * a; }
    constexpr ModInt& operator /= (const ModInt& a) { return *this = *this / a; }

    friend constexpr ModInt operator + (ll a, const ModInt& b) {
        return ModInt()._set(a % MD + b.x);
    }
    friend constexpr ModInt operator - (ll a, const ModInt& b) {
        return ModInt()._set(a % MD - b.x + MD);
    }
    friend constexpr ModInt operator * (ll a, const ModInt& b) {
        return ModInt()._set(a % MD * b.x % MD);
    }
    friend constexpr ModInt operator / (ll a, const ModInt& b) {
        return ModInt()._set(a % MD * b.inv().x % MD);
    }

    constexpr bool operator == (const ModInt& a) const { return x == a.x; }
    constexpr bool operator != (const ModInt& a) const { return x != a.x; }

    friend std::istream& operator >> (std::istream& is, ModInt& other) {
        ll val; is >> val;
        other = ModInt(val);
        return is;
    }
    constexpr friend std::ostream& operator << (std::ostream& os, const ModInt& other) {
        return os << other.x;
    }

    constexpr ModInt pow(ll k) const {
        ModInt ans = 1, tmp = x;
        while (k) {
            if (k & 1) ans *= tmp;
            tmp *= tmp;
            k >>= 1;
        }
        return ans;
    }

    constexpr ModInt inv() const {
        if (x < 1000111) {
            _precalc(1000111);
            return invs[x];
        }
        int a = x, b = MD, ax = 1, bx = 0;
        while (b) {
            int q = a/b, t = a%b;
            a = b; b = t;
            t = ax - bx*q;
            ax = bx; bx = t;
        }
        assert(a == 1);
        if (ax < 0) ax += MD;
        return ax;
    }

    static std::vector<ModInt> factorials, inv_factorials, invs;
    constexpr static void _precalc(int n) {
        if (factorials.empty()) {
            factorials = {1};
            inv_factorials = {1};
            invs = {0};
        }
        if (n > MD) n = MD;
        int old_sz = factorials.size();
        if (n <= old_sz) return;

        factorials.resize(n);
        inv_factorials.resize(n);
        invs.resize(n);

        for (int i = old_sz; i < n; ++i) factorials[i] = factorials[i-1] * i;
        inv_factorials[n-1] = factorials.back().pow(MD - 2);
        for (int i = n - 2; i >= old_sz; --i) inv_factorials[i] = inv_factorials[i+1] * (i+1);
        for (int i = n-1; i >= old_sz; --i) invs[i] = inv_factorials[i] * factorials[i-1];
    }

    static int get_primitive_root() {
        static int primitive_root = 0;
        if (!primitive_root) {
            primitive_root = [&]() {
                std::set<int> fac;
                int v = MD - 1;
                for (ll i = 2; i * i <= v; i++)
                    while (v % i == 0) fac.insert(i), v /= i;
                if (v > 1) fac.insert(v);
                for (int g = 1; g < MD; g++) {
                    bool ok = true;
                    for (auto i : fac)
                        if (ModInt(g).pow((MD - 1) / i) == 1) {
                            ok = false;
                            break;
                        }
                    if (ok) return g;
                }
                return -1;
            }();
        }
        return primitive_root;
    }

    static ModInt C(int n, int k) {
        _precalc(n + 1);
        return factorials[n] * inv_factorials[k] * inv_factorials[n-k];
    }
    
private:
    // Internal, DO NOT USE.
    // val must be in [0, 2*MD)
    constexpr inline __attribute__((always_inline)) ModInt& _set(ll v) {
        x = v >= MD ? v - MD : v;
        return *this;
    }
};
template <int MD> std::vector<ModInt<MD>> ModInt<MD>::factorials = {1};
template <int MD> std::vector<ModInt<MD>> ModInt<MD>::inv_factorials = {1};
template <int MD> std::vector<ModInt<MD>> ModInt<MD>::invs = {0};
// }}}
#line 1 "buffered_reader.h"
// Buffered reader {{{
namespace IO {
    const int BUFSIZE = 1<<14;
    char buf[BUFSIZE + 1], *inp = buf;

    bool reacheof;
    char get_char() {
        if (!*inp && !reacheof) {
            memset(buf, 0, sizeof buf);
            int tmp = fread(buf, 1, BUFSIZE, stdin);
            if (tmp != BUFSIZE) reacheof = true;
            inp = buf;
        }
        return *inp++;
    }
    template<typename T>
    T get() {
        int neg = 0;
        T res = 0;
        char c = get_char();
        while (!std::isdigit(c) && c != '-' && c != '+') c = get_char();
        if (c == '+') { neg = 0; }
        else if (c == '-') { neg = 1; }
        else res = c - '0';

        c = get_char();
        while (std::isdigit(c)) {
            res = res * 10 + (c - '0');
            c = get_char();
        }
        return neg ? -res : res;
    }
};
// Helper methods
int ri() {
    return IO::get<int>();
}
// }}}
#line 9 "DataStructure/test/segment_tree_pointsetrangecomposite.test.cpp"

using modular = ModInt<998244353>;

struct Func {
    modular a, b;
};

Func op(Func l, Func r) {
    return Func{
        l.a * r.a,
        r.a * l.b + r.b
    };
}
Func e() {
    return Func{1, 0};
}

int32_t main() {
    ios::sync_with_stdio(0); cin.tie(0);
    int n = IO::get<int>();
    int q = IO::get<int>();
    vector<Func> funcs(n);
    for (auto& f : funcs) {
        int a = IO::get<int>();
        int b = IO::get<int>();
        f = {a, b};
    }

    SegTree<Func, op, e> seg_tree(funcs);
    while (q--) {
        int typ = IO::get<int>();
        if (typ == 0) {
            int pos = IO::get<int>();
            int a = IO::get<int>();
            int b = IO::get<int>();
            seg_tree.set(pos, {a, b});
        } else {
            int l = IO::get<int>();
            int r = IO::get<int>();
            auto f = seg_tree.prod(l, r);
            modular x(IO::get<int>());
            cout << f.a * x + f.b << '\n';
        }
    }
    return 0;
}
Back to top page