This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_set_path_composite"
#include <bits/stdc++.h>
using namespace std;
#include "../SegTree.h"
#include "../../Math/modint.h"
#include "../HeavyLight_adamant.h"
using modular = ModInt<998244353>;
// SegTree ops
struct F {
modular a, b;
};
F op(const F& l, const F& r) {
return F{
l.a*r.a,
r.a*l.b + r.b
};
}
struct Node {
F forward, backward;
};
Node op(Node l, Node r) {
return Node {
op(l.forward, r.forward),
op(r.backward, l.backward)
};
}
Node e() {
return Node {
F{1, 0},
F{1, 0}
};
}
#define REP(i, a) for (int i = 0, _##i = (a); i < _##i; ++i)
int32_t main() {
ios::sync_with_stdio(0); cin.tie(0);
int n, q; cin >> n >> q;
vector<F> fs(n);
REP(i,n) {
int a, b; cin >> a >> b;
fs[i] = {a, b};
}
vector<vector<int>> g(n);
REP(i,n-1) {
int u, v; cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
HLD hld(g, 0);
vector<Node> nodes;
REP(i,n) {
auto f = fs[hld.order[i]];
nodes.push_back({f, f});
}
SegTree<Node, op, e> tree(nodes);
while (q--) {
int typ; cin >> typ;
if (typ == 0) {
int p, a, b; cin >> p >> a >> b;
tree.set(hld.in[p], {{a, b}, {a, b}});
} else {
int start, end, x; cin >> start >> end >> x;
auto segments = hld.getSegments(start, end);
F res {1, 0};
for (auto [u, v] : segments) {
if (hld.in[u] <= hld.in[v]) {
res = op(res, tree.prod(hld.in[u], hld.in[v] + 1).forward);
} else {
res = op(res, tree.prod(hld.in[v], hld.in[u] + 1).backward);
}
}
cout << (res.a * modular(x) + res.b) << '\n';
}
}
return 0;
}
#line 1 "DataStructure/test/hld_vertexsetpathcomposite.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_set_path_composite"
#include <bits/stdc++.h>
using namespace std;
#line 1 "DataStructure/SegTree.h"
// SegTree, copied from AtCoder library {{{
// AtCoder doc: https://atcoder.github.io/ac-library/master/document_en/segtree.html
//
// Notes:
// - Index of elements from 0 -> n-1
// - Range queries are [l, r-1]
//
// Tested:
// - (binary search) https://atcoder.jp/contests/practice2/tasks/practice2_j
// - https://oj.vnoi.info/problem/gss
// - https://oj.vnoi.info/problem/nklineup
// - (max_right & min_left for delete position queries) https://oj.vnoi.info/problem/segtree_itstr
// - https://judge.yosupo.jp/problem/point_add_range_sum
// - https://judge.yosupo.jp/problem/point_set_range_composite
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
template<
class T, // data type for nodes
T (*op) (T, T), // operator to combine 2 nodes
T (*e)() // identity element
>
struct SegTree {
SegTree() : SegTree(0) {}
explicit SegTree(int n) : SegTree(vector<T> (n, e())) {}
explicit SegTree(const vector<T>& v) : _n((int) v.size()) {
log = ceil_pow2(_n);
size = 1<<log;
d = vector<T> (2*size, e());
for (int i = 0; i < _n; i++) d[size+i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
// 0 <= p < n
void set(int p, T x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
// 0 <= p < n
T get(int p) const {
assert(0 <= p && p < _n);
return d[p + size];
}
// Get product in range [l, r-1]
// 0 <= l <= r <= n
// For empty segment (l == r) -> return e()
T prod(int l, int r) const {
assert(0 <= l && l <= r && r <= _n);
T sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
T all_prod() const {
return d[1];
}
// Binary search on SegTree to find largest r:
// f(op(a[l] .. a[r-1])) = true (assuming empty array is always true)
// f(op(a[l] .. a[r])) = false (assuming op(..., a[n]), which is out of bound, is always false)
template <bool (*f)(T)> int max_right(int l) const {
return max_right(l, [](T x) { return f(x); });
}
template <class F> int max_right(int l, F f) const {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
T sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
// Binary search on SegTree to find smallest l:
// f(op(a[l] .. a[r-1])) = true (assuming empty array is always true)
// f(op(a[l-1] .. a[r-1])) = false (assuming op(a[-1], ..), which is out of bound, is always false)
template <bool (*f)(T)> int min_left(int r) const {
return min_left(r, [](T x) { return f(x); });
}
template <class F> int min_left(int r, F f) const {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
T sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
vector<T> d;
void update(int k) {
d[k] = op(d[2*k], d[2*k+1]);
}
};
// }}}
// SegTree examples {{{
// Examples: Commonly used SegTree ops: max / min / sum
struct MaxSegTreeOp {
static int op(int x, int y) {
return max(x, y);
}
static int e() {
return INT_MIN;
}
};
struct MinSegTreeOp {
static int op(int x, int y) {
return min(x, y);
}
static int e() {
return INT_MAX;
}
};
struct SumSegTreeOp {
static long long op(long long x, long long y) {
return x + y;
}
static long long e() {
return 0;
}
};
// using STMax = SegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e>;
// using STMin = SegTree<int, MinSegTreeOp::op, MinSegTreeOp::e>;
// using STSum = SegTree<int, SumSegTreeOp::op, SumSegTreeOp::e>;
// }}}
#line 1 "Math/modint.h"
// ModInt {{{
template<int MD> struct ModInt {
using ll = long long;
int x;
constexpr ModInt() : x(0) {}
constexpr ModInt(ll v) { _set(v % MD + MD); }
constexpr static int mod() { return MD; }
constexpr explicit operator bool() const { return x != 0; }
constexpr ModInt operator + (const ModInt& a) const {
return ModInt()._set((ll) x + a.x);
}
constexpr ModInt operator - (const ModInt& a) const {
return ModInt()._set((ll) x - a.x + MD);
}
constexpr ModInt operator * (const ModInt& a) const {
return ModInt()._set((ll) x * a.x % MD);
}
constexpr ModInt operator / (const ModInt& a) const {
return ModInt()._set((ll) x * a.inv().x % MD);
}
constexpr ModInt operator - () const {
return ModInt()._set(MD - x);
}
constexpr ModInt& operator += (const ModInt& a) { return *this = *this + a; }
constexpr ModInt& operator -= (const ModInt& a) { return *this = *this - a; }
constexpr ModInt& operator *= (const ModInt& a) { return *this = *this * a; }
constexpr ModInt& operator /= (const ModInt& a) { return *this = *this / a; }
friend constexpr ModInt operator + (ll a, const ModInt& b) {
return ModInt()._set(a % MD + b.x);
}
friend constexpr ModInt operator - (ll a, const ModInt& b) {
return ModInt()._set(a % MD - b.x + MD);
}
friend constexpr ModInt operator * (ll a, const ModInt& b) {
return ModInt()._set(a % MD * b.x % MD);
}
friend constexpr ModInt operator / (ll a, const ModInt& b) {
return ModInt()._set(a % MD * b.inv().x % MD);
}
constexpr bool operator == (const ModInt& a) const { return x == a.x; }
constexpr bool operator != (const ModInt& a) const { return x != a.x; }
friend std::istream& operator >> (std::istream& is, ModInt& other) {
ll val; is >> val;
other = ModInt(val);
return is;
}
constexpr friend std::ostream& operator << (std::ostream& os, const ModInt& other) {
return os << other.x;
}
constexpr ModInt pow(ll k) const {
ModInt ans = 1, tmp = x;
while (k) {
if (k & 1) ans *= tmp;
tmp *= tmp;
k >>= 1;
}
return ans;
}
constexpr ModInt inv() const {
if (x < 1000111) {
_precalc(1000111);
return invs[x];
}
int a = x, b = MD, ax = 1, bx = 0;
while (b) {
int q = a/b, t = a%b;
a = b; b = t;
t = ax - bx*q;
ax = bx; bx = t;
}
assert(a == 1);
if (ax < 0) ax += MD;
return ax;
}
static std::vector<ModInt> factorials, inv_factorials, invs;
constexpr static void _precalc(int n) {
if (factorials.empty()) {
factorials = {1};
inv_factorials = {1};
invs = {0};
}
if (n > MD) n = MD;
int old_sz = factorials.size();
if (n <= old_sz) return;
factorials.resize(n);
inv_factorials.resize(n);
invs.resize(n);
for (int i = old_sz; i < n; ++i) factorials[i] = factorials[i-1] * i;
inv_factorials[n-1] = factorials.back().pow(MD - 2);
for (int i = n - 2; i >= old_sz; --i) inv_factorials[i] = inv_factorials[i+1] * (i+1);
for (int i = n-1; i >= old_sz; --i) invs[i] = inv_factorials[i] * factorials[i-1];
}
static int get_primitive_root() {
static int primitive_root = 0;
if (!primitive_root) {
primitive_root = [&]() {
std::set<int> fac;
int v = MD - 1;
for (ll i = 2; i * i <= v; i++)
while (v % i == 0) fac.insert(i), v /= i;
if (v > 1) fac.insert(v);
for (int g = 1; g < MD; g++) {
bool ok = true;
for (auto i : fac)
if (ModInt(g).pow((MD - 1) / i) == 1) {
ok = false;
break;
}
if (ok) return g;
}
return -1;
}();
}
return primitive_root;
}
static ModInt C(int n, int k) {
_precalc(n + 1);
return factorials[n] * inv_factorials[k] * inv_factorials[n-k];
}
private:
// Internal, DO NOT USE.
// val must be in [0, 2*MD)
constexpr inline __attribute__((always_inline)) ModInt& _set(ll v) {
x = v >= MD ? v - MD : v;
return *this;
}
};
template <int MD> std::vector<ModInt<MD>> ModInt<MD>::factorials = {1};
template <int MD> std::vector<ModInt<MD>> ModInt<MD>::inv_factorials = {1};
template <int MD> std::vector<ModInt<MD>> ModInt<MD>::invs = {0};
// }}}
#line 1 "DataStructure/HeavyLight_adamant.h"
// Index from 0
// Best used with SegTree.h
//
// Usage:
// HLD hld(g, root);
// // build segment tree. Note that we must use hld.order[i]
// vector<T> nodes;
// for (int i = 0; i < n; i++)
// nodes.push_back(initial_value[hld.order[i]])
// SegTree<S, op, e> st(nodes);
//
// // Update single vertex
// st.set(hld.in[u], new_value)
//
// // Update path
// hld.apply_path(from, to, is_edge, [&] (int l, int r) {
// st.apply(l, r+1, F);
// });
//
// // Query path
// hld.prod_path_commutative<S, op, e> (from, to, is_edge, [&] (int l, int r) {
// return st.prod(l, r+1);
// });
//
// Tested:
// - (vertex, path) https://judge.yosupo.jp/problem/vertex_add_path_sum
// - (vertex, path, non-commutative) https://judge.yosupo.jp/problem/vertex_set_path_composite
// - (vertex, subtree) https://judge.yosupo.jp/problem/vertex_add_subtree_sum
// - (vertex, path, non-commutative, 1-index) https://oj.vnoi.info/problem/icpc21_mt_l
// - (vertex, path) https://oj.vnoi.info/problem/qtree3
//
// - (edge, path) https://oj.vnoi.info/problem/qtreex
// - (edge, path) https://oj.vnoi.info/problem/lubenica
// - (edge, path) https://oj.vnoi.info/problem/pwalk
// - (edge, path, lazy) https://oj.vnoi.info/problem/kbuild
// - (edge, path, lazy) https://oj.vnoi.info/problem/onbridge
//
// - (lca) https://oj.vnoi.info/problem/fselect
// - (kth_parent) https://cses.fi/problemset/task/1687
// HeavyLight {{{
struct HLD {
HLD(const vector<vector<int>>& _g, int root)
: n(_g.size()), g(_g),
parent(n), depth(n), sz(n),
dfs_number(0), nxt(n), in(n), out(n), order(n)
{
assert(0 <= root && root < n);
// init parent, depth, sz
// also move most heavy child of u to g[u][0]
depth[root] = 0;
dfs_sz(root, -1);
// init nxt, in, out
nxt[root] = root;
dfs_hld(root);
}
int lca(int u, int v) const {
assert(0 <= u && u < n);
assert(0 <= v && v < n);
while (true) {
if (in[u] > in[v]) swap(u, v); // in[u] <= in[v]
if (nxt[u] == nxt[v]) return u;
v = parent[nxt[v]];
}
}
// return k-th parent
// if no such parent -> return -1
int kth_parent(int u, int k) const {
assert(0 <= u && u < n);
if (depth[u] < k) return -1;
while (true) {
int v = nxt[u];
if (in[u] - k >= in[v]) return order[in[u] - k];
k -= in[u] - in[v] + 1;
u = parent[v];
}
}
// return k-th vertex on path from u -> v (0 <= k)
// if k > distance -> return -1
int kth_vertex_on_path(int u, int v, int k) const {
assert(0 <= u && u < n);
assert(0 <= v && v < n);
int l = lca(u, v);
int ul = depth[u] - depth[l];
if (k <= ul) return kth_parent(u, k);
k -= ul;
int vl = depth[v] - depth[l];
if (k <= vl) return kth_parent(v, vl - k);
return -1;
}
int dist(int u, int v) const {
assert(0 <= u && u < n);
assert(0 <= v && v < n);
int l = lca(u, v);
return depth[u] + depth[v] - 2*depth[l];
}
// apply f on vertices on path [u, v]
// edge = true -> apply on edge
//
// f(l, r) should update segment tree [l, r] INCLUSIVE
void apply_path(int u, int v, bool edge, const function<void(int, int)> &f) {
assert(0 <= u && u < n);
assert(0 <= v && v < n);
if (u == v && edge) return;
while (true) {
if (in[u] > in[v]) swap(u, v); // in[u] <= in[v]
if (nxt[u] == nxt[v]) break;
f(in[nxt[v]], in[v]);
v = parent[nxt[v]];
}
if (u == v && edge) return;
f(in[u] + edge, in[v]);
}
// get prod of path u -> v
// edge = true -> get on edges
//
// f(l, r) should query segment tree [l, r] INCLUSIVE
// f must be commutative. For non-commutative, use getSegments below
template<class S, S (*op) (S, S), S (*e)()>
S prod_path_commutative(
int u, int v, bool edge,
const function<S(int, int)>& f) const {
assert(0 <= u && u < n);
assert(0 <= v && v < n);
if (u == v && edge) {
return e();
}
S su = e(), sv = e();
while (true) {
if (in[u] > in[v]) { swap(u, v); swap(su, sv); }
if (nxt[u] == nxt[v]) break;
sv = op(sv, f(in[nxt[v]], in[v]));
v = parent[nxt[v]];
}
if (u == v && edge) {
return op(su, sv);
} else {
return op(su, op(sv, f(in[u] + edge, in[v])));
}
}
// f(l, r) modify seg_tree [l, r] INCLUSIVE
void apply_subtree(int u, bool edge, const function<void(int, int)>& f) {
assert(0 <= u && u < n);
f(in[u] + edge, out[u] - 1);
}
// f(l, r) queries seg_tree [l, r] INCLUSIVE
template<class S>
S prod_subtree_commutative(int u, bool edge, const function<S(S, S)>& f) {
assert(0 <= u && u < n);
return f(in[u] + edge, out[u] - 1);
}
// Useful when functions are non-commutative
// Return all segments on path from u -> v
// For this problem, the order (u -> v is different from v -> u)
vector< pair<int,int> > getSegments(int u, int v) const {
assert(0 <= u && u < n);
assert(0 <= v && v < n);
vector< pair<int,int> > upFromU, upFromV;
int fu = nxt[u], fv = nxt[v];
while (fu != fv) { // u and v are on different chains
if (depth[fu] >= depth[fv]) { // move u up
upFromU.push_back({u, fu});
u = parent[fu];
fu = nxt[u];
} else { // move v up
upFromV.push_back({fv, v});
v = parent[fv];
fv = nxt[v];
}
}
upFromU.push_back({u, v});
reverse(upFromV.begin(), upFromV.end());
upFromU.insert(upFromU.end(), upFromV.begin(), upFromV.end());
return upFromU;
}
// return true if u is ancestor
bool isAncestor(int u, int v) const {
return in[u] <= in[v] && out[v] <= out[u];
}
// private:
int n;
vector<vector<int>> g;
vector<int> parent; // par[u] = parent of u. par[root] = -1
vector<int> depth; // depth[u] = distance from root -> u
vector<int> sz; // sz[u] = size of subtree rooted at u
int dfs_number;
vector<int> nxt; // nxt[u] = vertex on heavy path of u, nearest to root
vector<int> in, out; // subtree(u) is in range [in[u], out[u]-1]
vector<int> order; // euler tour
void dfs_sz(int u, int fu) {
parent[u] = fu;
sz[u] = 1;
// remove parent from adjacency list
auto it = std::find(g[u].begin(), g[u].end(), fu);
if (it != g[u].end()) g[u].erase(it);
for (int& v : g[u]) {
depth[v] = depth[u] + 1;
dfs_sz(v, u);
sz[u] += sz[v];
if (sz[v] > sz[g[u][0]]) swap(v, g[u][0]);
}
}
void dfs_hld(int u) {
order[dfs_number] = u;
in[u] = dfs_number++;
for (int v : g[u]) {
nxt[v] = (v == g[u][0] ? nxt[u] : v);
dfs_hld(v);
}
out[u] = dfs_number;
}
};
// }}}
#line 9 "DataStructure/test/hld_vertexsetpathcomposite.test.cpp"
using modular = ModInt<998244353>;
// SegTree ops
struct F {
modular a, b;
};
F op(const F& l, const F& r) {
return F{
l.a*r.a,
r.a*l.b + r.b
};
}
struct Node {
F forward, backward;
};
Node op(Node l, Node r) {
return Node {
op(l.forward, r.forward),
op(r.backward, l.backward)
};
}
Node e() {
return Node {
F{1, 0},
F{1, 0}
};
}
#define REP(i, a) for (int i = 0, _##i = (a); i < _##i; ++i)
int32_t main() {
ios::sync_with_stdio(0); cin.tie(0);
int n, q; cin >> n >> q;
vector<F> fs(n);
REP(i,n) {
int a, b; cin >> a >> b;
fs[i] = {a, b};
}
vector<vector<int>> g(n);
REP(i,n-1) {
int u, v; cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
HLD hld(g, 0);
vector<Node> nodes;
REP(i,n) {
auto f = fs[hld.order[i]];
nodes.push_back({f, f});
}
SegTree<Node, op, e> tree(nodes);
while (q--) {
int typ; cin >> typ;
if (typ == 0) {
int p, a, b; cin >> p >> a >> b;
tree.set(hld.in[p], {{a, b}, {a, b}});
} else {
int start, end, x; cin >> start >> end >> x;
auto segments = hld.getSegments(start, end);
F res {1, 0};
for (auto [u, v] : segments) {
if (hld.in[u] <= hld.in[v]) {
res = op(res, tree.prod(hld.in[u], hld.in[v] + 1).forward);
} else {
res = op(res, tree.prod(hld.in[v], hld.in[u] + 1).backward);
}
}
cout << (res.a * modular(x) + res.b) << '\n';
}
}
return 0;
}