ACM_Notebook_new

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ngthanhtrung23/ACM_Notebook_new

:heavy_check_mark: DataStructure/test/area_of_union_of_rectangles.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/area_of_union_of_rectangles"

#include <bits/stdc++.h>
using namespace std;
#include "../misc/area_of_union_of_rectangles.h"
using namespace area_of_union_of_rectangles;

int main() {
    int n; cin >> n;
    vector<Rect> rects(n);
    for (auto& r : rects) cin >> r;
    cout << solve(rects) << endl;
}
#line 1 "DataStructure/test/area_of_union_of_rectangles.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/area_of_union_of_rectangles"

#include <bits/stdc++.h>
using namespace std;
#line 1 "DataStructure/LazySegTree.h"
// Lazy Segment Tree, copied from AtCoder {{{
// Source: https://github.com/atcoder/ac-library/blob/master/atcoder/lazysegtree.hpp
// Doc: https://atcoder.github.io/ac-library/master/document_en/lazysegtree.html
//
// Notes:
// - Index of elements from 0
// - Range queries are [l, r-1]
// - composition(f, g) should return f(g())
//
// Tested:
// - https://oj.vnoi.info/problem/qmax2
// - https://oj.vnoi.info/problem/lites
// - (range set, add, mult, sum) https://oj.vnoi.info/problem/segtree_itmix
// - (range add (i-L)*A + B, sum) https://oj.vnoi.info/problem/segtree_itladder
// - https://atcoder.jp/contests/practice2/tasks/practice2_l
// - https://judge.yosupo.jp/problem/range_affine_range_sum

int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}
template<
    class S,                 // node data type
    S (*op) (S, S),          // combine 2 nodes
    S (*e) (),               // identity element
    class F,                 // lazy propagation tag
    S (*mapping) (F, S),     // apply tag F on a node
    F (*composition) (F, F), // combine 2 tags
    F (*id)()                // identity tag
>
struct LazySegTree {
    LazySegTree() : LazySegTree(0) {}
    explicit LazySegTree(int n) : LazySegTree(vector<S>(n, e())) {}
    explicit LazySegTree(const vector<S>& v) : _n((int) v.size()) {
        log = ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        lz = std::vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    // 0 <= p < n
    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    // 0 <= p < n
    S get(int p) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    // Get product in range [l, r-1]
    // 0 <= l <= r <= n
    // For empty segment (l == r) -> return e()
    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }

        return op(sml, smr);
    }

    S all_prod() {
        return d[1];
    }

    // 0 <= p < n
    void apply(int p, F f) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    // Apply f on all elements in range [l, r-1]
    // 0 <= l <= r <= n
    void apply(int l, int r, F f) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    // Binary search on SegTree to find largest r:
    //    f(op(a[l] .. a[r-1])) = true   (assuming empty array is always true)
    //    f(op(a[l] .. a[r])) = false    (assuming op(..., a[n]), which is out of bound, is always false)
    template <bool (*g)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G> int max_right(int l, G g) {
        assert(0 <= l && l <= _n);
        assert(g(e()));
        if (l == _n) return _n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!g(op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (g(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    // Binary search on SegTree to find smallest l:
    //    f(op(a[l] .. a[r-1])) = true      (assuming empty array is always true)
    //    f(op(a[l-1] .. a[r-1])) = false   (assuming op(a[-1], ..), which is out of bound, is always false)
    template <bool (*g)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G> int min_left(int r, G g) {
        assert(0 <= r && r <= _n);
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!g(op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (g(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }


private:
    int _n, size, log;
    vector<S> d;
    vector<F> lz;

    void update(int k) {
        d[k] = op(d[2*k], d[2*k+1]);
    }
    void all_apply(int k, F f) {
        d[k] = mapping(f, d[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2*k, lz[k]);
        all_apply(2*k+1, lz[k]);
        lz[k] = id();
    }
};
// }}}

// Examples {{{
// https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_D
// https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_E
// https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_F
// https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_G
// https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_H
// https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_I
// supports:
// - set a(l -> r) to val; val > NOT_SET
// - add a(l -> r) += val
// - find sum a(l -> r)
// - find min a(l -> r)
struct RangeSetAddMinSumOps {
    struct S { long long sum, min, sz; };
    static S op(S l, S r) { return S { l.sum + r.sum, min(l.min, r.min), l.sz + r.sz }; }
    static S e() { return S {0LL, INT_MAX, 0}; }

    static const long long NOT_SET = -1000111000;
    struct F { long long set, add; };

    static S mapping(F f, S s) {
        if (f.set == NOT_SET) {
            return S {
                s.sum + f.add * s.sz,
                s.min + f.add,
                s.sz,
            };
        }
        return S {
            (f.set + f.add) * s.sz,
            f.set + f.add,
            s.sz,
        };
    }
    static F composition(F f, F g) {
        if (f.set == NOT_SET) {
            return F { g.set, g.add + f.add };
        }
        return f;
    }
    static F id() {
        return F { NOT_SET, 0 };
    }
};
// }}}
#line 2 "DataStructure/misc/area_of_union_of_rectangles.h"

// Area of union of rectangles {{{
namespace area_of_union_of_rectangles {
    using ll = long long;
    const int INF = std::numeric_limits<int>::max() / 2;

    struct Rect {
        int x1, y1, x2, y2;
    };
    istream& operator >> (istream& cin, Rect& r) {
        cin >> r.x1 >> r.y1 >> r.x2 >> r.y2;
        return cin;
    }

    struct S {
        int min_cnt;
        ll sum;
    };
    S op(S x, S y) {
        if (x.min_cnt < y.min_cnt) return x;
        if (y.min_cnt < x.min_cnt) return y;
        return { x.min_cnt, x.sum + y.sum };
    }
    S e() { return { INF, 0 }; }
    S mapping(int f, S s) { return { s.min_cnt + f, s.sum }; }
    int composition(int f, int g) { return f + g; }
    int id() { return 0; }
    using ST = LazySegTree<S, op, e, int, mapping, composition, id>;

    ll solve(const std::vector<Rect>& rects) {
        if (rects.empty()) return ll(0);

        const int n = rects.size();
        std::vector<std::tuple<int, int, int, int>> events; events.reserve(2*n);
        std::vector<int> ys; ys.reserve(2*n);

        for (const auto& r : rects) {
            events.emplace_back(r.x1, r.y1, r.y2, +1);
            events.emplace_back(r.x2, r.y1, r.y2, -1);
            ys.push_back(r.y1);
            ys.push_back(r.y2);
        }
        std::sort(events.begin(), events.end(), [] (const auto& e1, const auto& e2) {
                return std::get<0>(e1) < std::get<0>(e2); });
        std::sort(ys.begin(), ys.end());
        ys.erase(std::unique(ys.begin(), ys.end()), ys.end());

        const int nys = ys.size();
        std::vector<S> init(nys - 1);
        for (int i = 0; i < nys - 1; ++i) {
            init[i] = { 0, ys[i+1] - ys[i] };
        }
        ST st(init);

        ll res = 0;
        ll lx = std::get<0>(events.front());  // events[i-1].x
        for (int i = 0; lx != std::get<0>(events.back());) {
            for (;; ++i) {
                auto [xi, d, u, add] = events[i];
                if (xi != lx) break;
                int ly = std::lower_bound(ys.begin(), ys.end(), d) - ys.begin();
                int ry = std::lower_bound(ys.begin(), ys.end(), u) - ys.begin();
                st.apply(ly, ry, add);
            }
            ll rx = std::get<0> (events[i]);
            auto [min_cnt, sum] = st.all_prod();
            res += (rx - lx) * (ys.back() - ys.front() - (min_cnt == 0 ? sum : ll(0)));
            lx = rx;
        }
        return res;
    }
}
// }}}
#line 6 "DataStructure/test/area_of_union_of_rectangles.test.cpp"
using namespace area_of_union_of_rectangles;

int main() {
    int n; cin >> n;
    vector<Rect> rects(n);
    for (auto& r : rects) cin >> r;
    cout << solve(rects) << endl;
}
Back to top page