This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_5_C"
#include "../../template.h"
#include "../HeavyLight_adamant.h"
void solve() {
ios::sync_with_stdio(0); cin.tie(0);
int n; cin >> n;
vector<vector<int>> adj(n);
REP(i,n) {
int k; cin >> k;
while (k--) {
int j; cin >> j;
adj[i].push_back(j);
adj[j].push_back(i);
}
}
HLD hld(adj, 0);
int q; cin >> q;
while (q--) {
int u, v; cin >> u >> v;
cout << hld.lca(u, v) << '\n';
}
}
#line 1 "DataStructure/test/aizu_grl_5_c_hld_lca.test.cpp"
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_5_C"
#line 1 "template.h"
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,a,b) for(int i=(a),_b=(b); i<=_b; i++)
#define FORD(i,a,b) for(int i=(a),_b=(b); i>=_b; i--)
#define REP(i,a) for(int i=0,_a=(a); i<_a; i++)
#define EACH(it,a) for(__typeof(a.begin()) it = a.begin(); it != a.end(); ++it)
#define DEBUG(x) { cout << #x << " = "; cout << (x) << endl; }
#define PR(a,n) { cout << #a << " = "; FOR(_,1,n) cout << a[_] << ' '; cout << endl; }
#define PR0(a,n) { cout << #a << " = "; REP(_,n) cout << a[_] << ' '; cout << endl; }
#define sqr(x) ((x) * (x))
// For printing pair, container, etc.
// Copied from https://quangloc99.github.io/2021/07/30/my-CP-debugging-template.html
template<class U, class V> ostream& operator << (ostream& out, const pair<U, V>& p) {
return out << '(' << p.first << ", " << p.second << ')';
}
template<class Con, class = decltype(begin(declval<Con>()))>
typename enable_if<!is_same<Con, string>::value, ostream&>::type
operator << (ostream& out, const Con& con) {
out << '{';
for (auto beg = con.begin(), it = beg; it != con.end(); it++) {
out << (it == beg ? "" : ", ") << *it;
}
return out << '}';
}
template<size_t i, class T> ostream& print_tuple_utils(ostream& out, const T& tup) {
if constexpr(i == tuple_size<T>::value) return out << ")";
else return print_tuple_utils<i + 1, T>(out << (i ? ", " : "(") << get<i>(tup), tup);
}
template<class ...U> ostream& operator << (ostream& out, const tuple<U...>& t) {
return print_tuple_utils<0, tuple<U...>>(out, t);
}
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
long long get_rand(long long r) {
return uniform_int_distribution<long long> (0, r-1)(rng);
}
template<typename T>
vector<T> read_vector(int n) {
vector<T> res(n);
for (int& x : res) cin >> x;
return res;
}
void solve();
int main() {
ios::sync_with_stdio(0); cin.tie(0);
solve();
return 0;
}
#line 1 "DataStructure/HeavyLight_adamant.h"
// Index from 0
// Best used with SegTree.h
//
// Usage:
// HLD hld(g, root);
// // build segment tree. Note that we must use hld.order[i]
// vector<T> nodes;
// for (int i = 0; i < n; i++)
// nodes.push_back(initial_value[hld.order[i]])
// SegTree<S, op, e> st(nodes);
//
// // Update single vertex
// st.set(hld.in[u], new_value)
//
// // Update path
// hld.apply_path(from, to, is_edge, [&] (int l, int r) {
// st.apply(l, r+1, F);
// });
//
// // Query path
// hld.prod_path_commutative<S, op, e> (from, to, is_edge, [&] (int l, int r) {
// return st.prod(l, r+1);
// });
//
// Tested:
// - (vertex, path) https://judge.yosupo.jp/problem/vertex_add_path_sum
// - (vertex, path, non-commutative) https://judge.yosupo.jp/problem/vertex_set_path_composite
// - (vertex, subtree) https://judge.yosupo.jp/problem/vertex_add_subtree_sum
// - (vertex, path, non-commutative, 1-index) https://oj.vnoi.info/problem/icpc21_mt_l
// - (vertex, path) https://oj.vnoi.info/problem/qtree3
//
// - (edge, path) https://oj.vnoi.info/problem/qtreex
// - (edge, path) https://oj.vnoi.info/problem/lubenica
// - (edge, path) https://oj.vnoi.info/problem/pwalk
// - (edge, path, lazy) https://oj.vnoi.info/problem/kbuild
// - (edge, path, lazy) https://oj.vnoi.info/problem/onbridge
//
// - (lca) https://oj.vnoi.info/problem/fselect
// - (kth_parent) https://cses.fi/problemset/task/1687
// HeavyLight {{{
struct HLD {
HLD(const vector<vector<int>>& _g, int root)
: n(_g.size()), g(_g),
parent(n), depth(n), sz(n),
dfs_number(0), nxt(n), in(n), out(n), order(n)
{
assert(0 <= root && root < n);
// init parent, depth, sz
// also move most heavy child of u to g[u][0]
depth[root] = 0;
dfs_sz(root, -1);
// init nxt, in, out
nxt[root] = root;
dfs_hld(root);
}
int lca(int u, int v) const {
assert(0 <= u && u < n);
assert(0 <= v && v < n);
while (true) {
if (in[u] > in[v]) swap(u, v); // in[u] <= in[v]
if (nxt[u] == nxt[v]) return u;
v = parent[nxt[v]];
}
}
// return k-th parent
// if no such parent -> return -1
int kth_parent(int u, int k) const {
assert(0 <= u && u < n);
if (depth[u] < k) return -1;
while (true) {
int v = nxt[u];
if (in[u] - k >= in[v]) return order[in[u] - k];
k -= in[u] - in[v] + 1;
u = parent[v];
}
}
// return k-th vertex on path from u -> v (0 <= k)
// if k > distance -> return -1
int kth_vertex_on_path(int u, int v, int k) const {
assert(0 <= u && u < n);
assert(0 <= v && v < n);
int l = lca(u, v);
int ul = depth[u] - depth[l];
if (k <= ul) return kth_parent(u, k);
k -= ul;
int vl = depth[v] - depth[l];
if (k <= vl) return kth_parent(v, vl - k);
return -1;
}
int dist(int u, int v) const {
assert(0 <= u && u < n);
assert(0 <= v && v < n);
int l = lca(u, v);
return depth[u] + depth[v] - 2*depth[l];
}
// apply f on vertices on path [u, v]
// edge = true -> apply on edge
//
// f(l, r) should update segment tree [l, r] INCLUSIVE
void apply_path(int u, int v, bool edge, const function<void(int, int)> &f) {
assert(0 <= u && u < n);
assert(0 <= v && v < n);
if (u == v && edge) return;
while (true) {
if (in[u] > in[v]) swap(u, v); // in[u] <= in[v]
if (nxt[u] == nxt[v]) break;
f(in[nxt[v]], in[v]);
v = parent[nxt[v]];
}
if (u == v && edge) return;
f(in[u] + edge, in[v]);
}
// get prod of path u -> v
// edge = true -> get on edges
//
// f(l, r) should query segment tree [l, r] INCLUSIVE
// f must be commutative. For non-commutative, use getSegments below
template<class S, S (*op) (S, S), S (*e)()>
S prod_path_commutative(
int u, int v, bool edge,
const function<S(int, int)>& f) const {
assert(0 <= u && u < n);
assert(0 <= v && v < n);
if (u == v && edge) {
return e();
}
S su = e(), sv = e();
while (true) {
if (in[u] > in[v]) { swap(u, v); swap(su, sv); }
if (nxt[u] == nxt[v]) break;
sv = op(sv, f(in[nxt[v]], in[v]));
v = parent[nxt[v]];
}
if (u == v && edge) {
return op(su, sv);
} else {
return op(su, op(sv, f(in[u] + edge, in[v])));
}
}
// f(l, r) modify seg_tree [l, r] INCLUSIVE
void apply_subtree(int u, bool edge, const function<void(int, int)>& f) {
assert(0 <= u && u < n);
f(in[u] + edge, out[u] - 1);
}
// f(l, r) queries seg_tree [l, r] INCLUSIVE
template<class S>
S prod_subtree_commutative(int u, bool edge, const function<S(S, S)>& f) {
assert(0 <= u && u < n);
return f(in[u] + edge, out[u] - 1);
}
// Useful when functions are non-commutative
// Return all segments on path from u -> v
// For this problem, the order (u -> v is different from v -> u)
vector< pair<int,int> > getSegments(int u, int v) const {
assert(0 <= u && u < n);
assert(0 <= v && v < n);
vector< pair<int,int> > upFromU, upFromV;
int fu = nxt[u], fv = nxt[v];
while (fu != fv) { // u and v are on different chains
if (depth[fu] >= depth[fv]) { // move u up
upFromU.push_back({u, fu});
u = parent[fu];
fu = nxt[u];
} else { // move v up
upFromV.push_back({fv, v});
v = parent[fv];
fv = nxt[v];
}
}
upFromU.push_back({u, v});
reverse(upFromV.begin(), upFromV.end());
upFromU.insert(upFromU.end(), upFromV.begin(), upFromV.end());
return upFromU;
}
// return true if u is ancestor
bool isAncestor(int u, int v) const {
return in[u] <= in[v] && out[v] <= out[u];
}
// private:
int n;
vector<vector<int>> g;
vector<int> parent; // par[u] = parent of u. par[root] = -1
vector<int> depth; // depth[u] = distance from root -> u
vector<int> sz; // sz[u] = size of subtree rooted at u
int dfs_number;
vector<int> nxt; // nxt[u] = vertex on heavy path of u, nearest to root
vector<int> in, out; // subtree(u) is in range [in[u], out[u]-1]
vector<int> order; // euler tour
void dfs_sz(int u, int fu) {
parent[u] = fu;
sz[u] = 1;
// remove parent from adjacency list
auto it = std::find(g[u].begin(), g[u].end(), fu);
if (it != g[u].end()) g[u].erase(it);
for (int& v : g[u]) {
depth[v] = depth[u] + 1;
dfs_sz(v, u);
sz[u] += sz[v];
if (sz[v] > sz[g[u][0]]) swap(v, g[u][0]);
}
}
void dfs_hld(int u) {
order[dfs_number] = u;
in[u] = dfs_number++;
for (int v : g[u]) {
nxt[v] = (v == g[u][0] ? nxt[u] : v);
dfs_hld(v);
}
out[u] = dfs_number;
}
};
// }}}
#line 5 "DataStructure/test/aizu_grl_5_c_hld_lca.test.cpp"
void solve() {
ios::sync_with_stdio(0); cin.tie(0);
int n; cin >> n;
vector<vector<int>> adj(n);
REP(i,n) {
int k; cin >> k;
while (k--) {
int j; cin >> j;
adj[i].push_back(j);
adj[j].push_back(i);
}
}
HLD hld(adj, 0);
int q; cin >> q;
while (q--) {
int u, v; cin >> u >> v;
cout << hld.lca(u, v) << '\n';
}
}