ACM_Notebook_new

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ngthanhtrung23/ACM_Notebook_new

:heavy_check_mark: DataStructure/test/aizu_dsl_2_g_segment_tree_rangeaddsum.test.cpp

Depends on

Code

#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DSL_2_G"

#include "../../template.h"
#include "../LazySegTree.h"

void solve() {
    int n, q; cin >> n >> q;
    vector<RangeSetAddMinSumOps::S> nodes;
    REP(i,n) nodes.push_back(RangeSetAddMinSumOps::S{0, 0, 1});
    LazySegTree<
        RangeSetAddMinSumOps::S,
        RangeSetAddMinSumOps::op,
        RangeSetAddMinSumOps::e,
        RangeSetAddMinSumOps::F,
        RangeSetAddMinSumOps::mapping,
        RangeSetAddMinSumOps::composition,
        RangeSetAddMinSumOps::id
    > st(nodes);
    while (q--) {
        int typ; cin >> typ;
        if (typ == 0) {
            int l, r, val; cin >> l >> r >> val;
            --l;
            st.apply(l, r, RangeSetAddMinSumOps::F { RangeSetAddMinSumOps::NOT_SET, val });
        } else {
            int l, r; cin >> l >> r;
            --l;
            cout << st.prod(l, r).sum << '\n';
        }
    }
}
#line 1 "DataStructure/test/aizu_dsl_2_g_segment_tree_rangeaddsum.test.cpp"
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DSL_2_G"

#line 1 "template.h"
#include <bits/stdc++.h>
using namespace std;

#define FOR(i,a,b) for(int i=(a),_b=(b); i<=_b; i++)
#define FORD(i,a,b) for(int i=(a),_b=(b); i>=_b; i--)
#define REP(i,a) for(int i=0,_a=(a); i<_a; i++)
#define EACH(it,a) for(__typeof(a.begin()) it = a.begin(); it != a.end(); ++it)

#define DEBUG(x) { cout << #x << " = "; cout << (x) << endl; }
#define PR(a,n) { cout << #a << " = "; FOR(_,1,n) cout << a[_] << ' '; cout << endl; }
#define PR0(a,n) { cout << #a << " = "; REP(_,n) cout << a[_] << ' '; cout << endl; }

#define sqr(x) ((x) * (x))

// For printing pair, container, etc.
// Copied from https://quangloc99.github.io/2021/07/30/my-CP-debugging-template.html
template<class U, class V> ostream& operator << (ostream& out, const pair<U, V>& p) {
    return out << '(' << p.first << ", " << p.second << ')';
}

template<class Con, class = decltype(begin(declval<Con>()))>
typename enable_if<!is_same<Con, string>::value, ostream&>::type
operator << (ostream& out, const Con& con) {
    out << '{';
    for (auto beg = con.begin(), it = beg; it != con.end(); it++) {
        out << (it == beg ? "" : ", ") << *it;
    }
    return out << '}';
}
template<size_t i, class T> ostream& print_tuple_utils(ostream& out, const T& tup) {
    if constexpr(i == tuple_size<T>::value) return out << ")"; 
    else return print_tuple_utils<i + 1, T>(out << (i ? ", " : "(") << get<i>(tup), tup); 
}
template<class ...U> ostream& operator << (ostream& out, const tuple<U...>& t) {
    return print_tuple_utils<0, tuple<U...>>(out, t);
}

mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
long long get_rand(long long r) {
    return uniform_int_distribution<long long> (0, r-1)(rng);
}

template<typename T>
vector<T> read_vector(int n) {
    vector<T> res(n);
    for (int& x : res) cin >> x;
    return res;
}

void solve();

int main() {
    ios::sync_with_stdio(0); cin.tie(0);
    solve();
    return 0;
}
#line 1 "DataStructure/LazySegTree.h"
// Lazy Segment Tree, copied from AtCoder {{{
// Source: https://github.com/atcoder/ac-library/blob/master/atcoder/lazysegtree.hpp
// Doc: https://atcoder.github.io/ac-library/master/document_en/lazysegtree.html
//
// Notes:
// - Index of elements from 0
// - Range queries are [l, r-1]
// - composition(f, g) should return f(g())
//
// Tested:
// - https://oj.vnoi.info/problem/qmax2
// - https://oj.vnoi.info/problem/lites
// - (range set, add, mult, sum) https://oj.vnoi.info/problem/segtree_itmix
// - (range add (i-L)*A + B, sum) https://oj.vnoi.info/problem/segtree_itladder
// - https://atcoder.jp/contests/practice2/tasks/practice2_l
// - https://judge.yosupo.jp/problem/range_affine_range_sum

int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}
template<
    class S,                 // node data type
    S (*op) (S, S),          // combine 2 nodes
    S (*e) (),               // identity element
    class F,                 // lazy propagation tag
    S (*mapping) (F, S),     // apply tag F on a node
    F (*composition) (F, F), // combine 2 tags
    F (*id)()                // identity tag
>
struct LazySegTree {
    LazySegTree() : LazySegTree(0) {}
    explicit LazySegTree(int n) : LazySegTree(vector<S>(n, e())) {}
    explicit LazySegTree(const vector<S>& v) : _n((int) v.size()) {
        log = ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        lz = std::vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    // 0 <= p < n
    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    // 0 <= p < n
    S get(int p) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    // Get product in range [l, r-1]
    // 0 <= l <= r <= n
    // For empty segment (l == r) -> return e()
    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }

        return op(sml, smr);
    }

    S all_prod() {
        return d[1];
    }

    // 0 <= p < n
    void apply(int p, F f) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    // Apply f on all elements in range [l, r-1]
    // 0 <= l <= r <= n
    void apply(int l, int r, F f) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    // Binary search on SegTree to find largest r:
    //    f(op(a[l] .. a[r-1])) = true   (assuming empty array is always true)
    //    f(op(a[l] .. a[r])) = false    (assuming op(..., a[n]), which is out of bound, is always false)
    template <bool (*g)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G> int max_right(int l, G g) {
        assert(0 <= l && l <= _n);
        assert(g(e()));
        if (l == _n) return _n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!g(op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (g(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    // Binary search on SegTree to find smallest l:
    //    f(op(a[l] .. a[r-1])) = true      (assuming empty array is always true)
    //    f(op(a[l-1] .. a[r-1])) = false   (assuming op(a[-1], ..), which is out of bound, is always false)
    template <bool (*g)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G> int min_left(int r, G g) {
        assert(0 <= r && r <= _n);
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!g(op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (g(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }


private:
    int _n, size, log;
    vector<S> d;
    vector<F> lz;

    void update(int k) {
        d[k] = op(d[2*k], d[2*k+1]);
    }
    void all_apply(int k, F f) {
        d[k] = mapping(f, d[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2*k, lz[k]);
        all_apply(2*k+1, lz[k]);
        lz[k] = id();
    }
};
// }}}

// Examples {{{
// https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_D
// https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_E
// https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_F
// https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_G
// https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_H
// https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_I
// supports:
// - set a(l -> r) to val; val > NOT_SET
// - add a(l -> r) += val
// - find sum a(l -> r)
// - find min a(l -> r)
struct RangeSetAddMinSumOps {
    struct S { long long sum, min, sz; };
    static S op(S l, S r) { return S { l.sum + r.sum, min(l.min, r.min), l.sz + r.sz }; }
    static S e() { return S {0LL, INT_MAX, 0}; }

    static const long long NOT_SET = -1000111000;
    struct F { long long set, add; };

    static S mapping(F f, S s) {
        if (f.set == NOT_SET) {
            return S {
                s.sum + f.add * s.sz,
                s.min + f.add,
                s.sz,
            };
        }
        return S {
            (f.set + f.add) * s.sz,
            f.set + f.add,
            s.sz,
        };
    }
    static F composition(F f, F g) {
        if (f.set == NOT_SET) {
            return F { g.set, g.add + f.add };
        }
        return f;
    }
    static F id() {
        return F { NOT_SET, 0 };
    }
};
// }}}
#line 5 "DataStructure/test/aizu_dsl_2_g_segment_tree_rangeaddsum.test.cpp"

void solve() {
    int n, q; cin >> n >> q;
    vector<RangeSetAddMinSumOps::S> nodes;
    REP(i,n) nodes.push_back(RangeSetAddMinSumOps::S{0, 0, 1});
    LazySegTree<
        RangeSetAddMinSumOps::S,
        RangeSetAddMinSumOps::op,
        RangeSetAddMinSumOps::e,
        RangeSetAddMinSumOps::F,
        RangeSetAddMinSumOps::mapping,
        RangeSetAddMinSumOps::composition,
        RangeSetAddMinSumOps::id
    > st(nodes);
    while (q--) {
        int typ; cin >> typ;
        if (typ == 0) {
            int l, r, val; cin >> l >> r >> val;
            --l;
            st.apply(l, r, RangeSetAddMinSumOps::F { RangeSetAddMinSumOps::NOT_SET, val });
        } else {
            int l, r; cin >> l >> r;
            --l;
            cout << st.prod(l, r).sum << '\n';
        }
    }
}
Back to top page