This documentation is automatically generated by online-judge-tools/verification-helper
// http://codeforces.com/blog/entry/8219
// Original Recurrence:
// dp[i][j] = min(dp[i][k] + dp[k][j]) + C[i][j] for k = i+1..j-1
// Necessary & Sufficient Conditions:
// A[i][j-1] <= A[i][j] <= A[i+1][j]
// with A[i][j] = smallest k that gives optimal answer
// Also applicable if the following conditions are met:
// 1. C[a][c] + C[b][d] <= C[a][d] + C[b][c] (quadrangle inequality)
// 2. C[b][c] <= C[a][d] (monotonicity)
// for all a <= b <= c <= d
// To use:
// Calculate dp[i][i] and A[i][i]
//
// FOR(len = 1..n-1)
// FOR(i = 1..n-len) {
// j = i + len
// FOR(k = A[i][j-1]..A[i+1][j])
// update(dp[i][j])
// }
//
// There is another type of Knuth in https://oj.vnoi.info/problem/icpc22_mn_c
// - f[i][j] = min(f[i-1][last] + cost[last+1][j])
// - cost satisfies quandrangle inequality
// FOR(i, 1, k)
// FORD(j, n, 1)
// FOR(last, opt[i-1][j], opt[i][j+1])
// update f[i][j] and A[i][j] using f[i-1][last] + cost[last+1][j]
// OPTCUT
#include "../../template.h"
const int MN = 2011;
int a[MN], dp[MN][MN], C[MN][MN], A[MN][MN];
int n;
void solve() {
cin >> n; FOR(i,1,n) { cin >> a[i]; a[i] += a[i-1]; }
FOR(i,1,n) FOR(j,i,n) C[i][j] = a[j] - a[i-1];
FOR(i,1,n) dp[i][i] = 0, A[i][i] = i;
FOR(len,1,n-1)
FOR(i,1,n-len) {
int j = i + len;
dp[i][j] = 2000111000;
FOR(k,A[i][j-1],A[i+1][j]) {
int cur = dp[i][k-1] + dp[k][j] + C[i][j];
if (cur < dp[i][j]) {
dp[i][j] = cur;
A[i][j] = k;
}
}
}
cout << dp[1][n] << endl;
}
#line 1 "DP/optimizations/knuth.cpp"
// http://codeforces.com/blog/entry/8219
// Original Recurrence:
// dp[i][j] = min(dp[i][k] + dp[k][j]) + C[i][j] for k = i+1..j-1
// Necessary & Sufficient Conditions:
// A[i][j-1] <= A[i][j] <= A[i+1][j]
// with A[i][j] = smallest k that gives optimal answer
// Also applicable if the following conditions are met:
// 1. C[a][c] + C[b][d] <= C[a][d] + C[b][c] (quadrangle inequality)
// 2. C[b][c] <= C[a][d] (monotonicity)
// for all a <= b <= c <= d
// To use:
// Calculate dp[i][i] and A[i][i]
//
// FOR(len = 1..n-1)
// FOR(i = 1..n-len) {
// j = i + len
// FOR(k = A[i][j-1]..A[i+1][j])
// update(dp[i][j])
// }
//
// There is another type of Knuth in https://oj.vnoi.info/problem/icpc22_mn_c
// - f[i][j] = min(f[i-1][last] + cost[last+1][j])
// - cost satisfies quandrangle inequality
// FOR(i, 1, k)
// FORD(j, n, 1)
// FOR(last, opt[i-1][j], opt[i][j+1])
// update f[i][j] and A[i][j] using f[i-1][last] + cost[last+1][j]
// OPTCUT
#line 1 "template.h"
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,a,b) for(int i=(a),_b=(b); i<=_b; i++)
#define FORD(i,a,b) for(int i=(a),_b=(b); i>=_b; i--)
#define REP(i,a) for(int i=0,_a=(a); i<_a; i++)
#define EACH(it,a) for(__typeof(a.begin()) it = a.begin(); it != a.end(); ++it)
#define DEBUG(x) { cout << #x << " = "; cout << (x) << endl; }
#define PR(a,n) { cout << #a << " = "; FOR(_,1,n) cout << a[_] << ' '; cout << endl; }
#define PR0(a,n) { cout << #a << " = "; REP(_,n) cout << a[_] << ' '; cout << endl; }
#define sqr(x) ((x) * (x))
// For printing pair, container, etc.
// Copied from https://quangloc99.github.io/2021/07/30/my-CP-debugging-template.html
template<class U, class V> ostream& operator << (ostream& out, const pair<U, V>& p) {
return out << '(' << p.first << ", " << p.second << ')';
}
template<class Con, class = decltype(begin(declval<Con>()))>
typename enable_if<!is_same<Con, string>::value, ostream&>::type
operator << (ostream& out, const Con& con) {
out << '{';
for (auto beg = con.begin(), it = beg; it != con.end(); it++) {
out << (it == beg ? "" : ", ") << *it;
}
return out << '}';
}
template<size_t i, class T> ostream& print_tuple_utils(ostream& out, const T& tup) {
if constexpr(i == tuple_size<T>::value) return out << ")";
else return print_tuple_utils<i + 1, T>(out << (i ? ", " : "(") << get<i>(tup), tup);
}
template<class ...U> ostream& operator << (ostream& out, const tuple<U...>& t) {
return print_tuple_utils<0, tuple<U...>>(out, t);
}
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
long long get_rand(long long r) {
return uniform_int_distribution<long long> (0, r-1)(rng);
}
template<typename T>
vector<T> read_vector(int n) {
vector<T> res(n);
for (int& x : res) cin >> x;
return res;
}
void solve();
int main() {
ios::sync_with_stdio(0); cin.tie(0);
solve();
return 0;
}
#line 31 "DP/optimizations/knuth.cpp"
const int MN = 2011;
int a[MN], dp[MN][MN], C[MN][MN], A[MN][MN];
int n;
void solve() {
cin >> n; FOR(i,1,n) { cin >> a[i]; a[i] += a[i-1]; }
FOR(i,1,n) FOR(j,i,n) C[i][j] = a[j] - a[i-1];
FOR(i,1,n) dp[i][i] = 0, A[i][i] = i;
FOR(len,1,n-1)
FOR(i,1,n-len) {
int j = i + len;
dp[i][j] = 2000111000;
FOR(k,A[i][j-1],A[i+1][j]) {
int cur = dp[i][k-1] + dp[k][j] + C[i][j];
if (cur < dp[i][j]) {
dp[i][j] = cur;
A[i][j] = k;
}
}
}
cout << dp[1][n] << endl;
}