This documentation is automatically generated by online-judge-tools/verification-helper
// Source: http://codeforces.com/blog/entry/13225
// Non-strict.
int lis_non_strict(const vector<int>& a) {
multiset<int> s;
for (int x : a) {
s.insert(x);
auto it = s.upper_bound(x);
if (it != s.end())
s.erase(it);
}
return s.size();
}
// Strict.
int lis_strict(const vector<int>& a) {
multiset<int> s;
for (int x : a) {
s.insert(x);
auto it = s.lower_bound(x);
it++;
if (it != s.end())
s.erase(it);
}
return s.size();
}
// Return indices of LIS (strict)
vector<int> lis_strict_trace(const vector<int>& a) {
int n = (int) a.size();
vector<int> b(n+1, 0), f(n, 0);
int answer = 0;
for (int i = 0; i < n; i++) {
f[i] = lower_bound(b.begin() + 1, b.begin()+answer+1, a[i]) - b.begin();
answer = max(answer, f[i]);
b[f[i]] = a[i];
}
int require = answer;
vector<int> T;
for (int i = n-1; i >= 0; i--) {
if (f[i] == require) {
T.push_back(i);
require--;
}
}
reverse(T.begin(), T.end());
return T;
}
// Count number of LIS
using mint = long long; // Cnt is exponential. Check if statement says ModInt here?
// Returns: (length of LIS, number of LIS)
pair<int,mint> count_lis(const vector<int>& a) {
if (a.empty()) {
return {0, 1};
}
// dp[i] = [ (last value, accumulate count) ] for increasing seq of
// length i+1
// last value are decreasing
vector<vector<pair<int,mint>>> dp(a.size() + 1);
int max_len = 0;
// returns true if we can append `val` to LIS stored at `cur`.
auto pred_len = [] (const vector<pair<int, mint>>& cur, int val) {
return !cur.empty() && cur.back().first < val;
};
// returns true if we can append `val` after the LIS represented with `p`.
auto pred_val = [] (int val, const pair<int,mint>& p) { return val > p.first; };
for (int x : a) {
int len = lower_bound(dp.begin(), dp.end(), x, pred_len) - dp.begin();
mint cnt = 1;
if (len >= 1) {
int pos = upper_bound(dp[len-1].begin(), dp[len-1].end(), x, pred_val) - dp[len-1].begin();
cnt = dp[len-1].back().second;
cnt -= (pos == 0) ? 0 : dp[len-1][pos-1].second;
}
dp[len].emplace_back(x, cnt + (dp[len].empty() ? 0 : dp[len].back().second));
max_len = max(max_len, len + 1);
}
assert(max_len > 0);
return {
max_len,
dp[max_len-1].back().second,
};
}
#line 1 "DP/lis.h"
// Source: http://codeforces.com/blog/entry/13225
// Non-strict.
int lis_non_strict(const vector<int>& a) {
multiset<int> s;
for (int x : a) {
s.insert(x);
auto it = s.upper_bound(x);
if (it != s.end())
s.erase(it);
}
return s.size();
}
// Strict.
int lis_strict(const vector<int>& a) {
multiset<int> s;
for (int x : a) {
s.insert(x);
auto it = s.lower_bound(x);
it++;
if (it != s.end())
s.erase(it);
}
return s.size();
}
// Return indices of LIS (strict)
vector<int> lis_strict_trace(const vector<int>& a) {
int n = (int) a.size();
vector<int> b(n+1, 0), f(n, 0);
int answer = 0;
for (int i = 0; i < n; i++) {
f[i] = lower_bound(b.begin() + 1, b.begin()+answer+1, a[i]) - b.begin();
answer = max(answer, f[i]);
b[f[i]] = a[i];
}
int require = answer;
vector<int> T;
for (int i = n-1; i >= 0; i--) {
if (f[i] == require) {
T.push_back(i);
require--;
}
}
reverse(T.begin(), T.end());
return T;
}
// Count number of LIS
using mint = long long; // Cnt is exponential. Check if statement says ModInt here?
// Returns: (length of LIS, number of LIS)
pair<int,mint> count_lis(const vector<int>& a) {
if (a.empty()) {
return {0, 1};
}
// dp[i] = [ (last value, accumulate count) ] for increasing seq of
// length i+1
// last value are decreasing
vector<vector<pair<int,mint>>> dp(a.size() + 1);
int max_len = 0;
// returns true if we can append `val` to LIS stored at `cur`.
auto pred_len = [] (const vector<pair<int, mint>>& cur, int val) {
return !cur.empty() && cur.back().first < val;
};
// returns true if we can append `val` after the LIS represented with `p`.
auto pred_val = [] (int val, const pair<int,mint>& p) { return val > p.first; };
for (int x : a) {
int len = lower_bound(dp.begin(), dp.end(), x, pred_len) - dp.begin();
mint cnt = 1;
if (len >= 1) {
int pos = upper_bound(dp[len-1].begin(), dp[len-1].end(), x, pred_val) - dp[len-1].begin();
cnt = dp[len-1].back().second;
cnt -= (pos == 0) ? 0 : dp[len-1][pos-1].second;
}
dp[len].emplace_back(x, cnt + (dp[len].empty() ? 0 : dp[len].back().second));
max_len = max(max_len, len + 1);
}
assert(max_len > 0);
return {
max_len,
dp[max_len-1].back().second,
};
}